湖北省公安縣博雅中學高一數(shù)學《第四章 圓與方程》知識小結.doc
《湖北省公安縣博雅中學高一數(shù)學《第四章 圓與方程》知識小結.doc》由會員分享,可在線閱讀,更多相關《湖北省公安縣博雅中學高一數(shù)學《第四章 圓與方程》知識小結.doc(2頁珍藏版)》請在匯文網(wǎng)上搜索。
1、第四章 圓與方程知識小結1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。2、圓的方程(1)標準方程,圓心,半徑為r;(2)一般方程當時,方程表示圓,此時圓心為,半徑為當時,表示一個點; 當時,方程不表示任何圖形。(3)求圓方程的方法:一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);另外要注意多利用圓的幾何性質:如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。3、直線與圓的位置關系:直線與圓的位置關系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:(1)設直線,圓,圓心
2、到l的距離為,則有;(2)設直線,圓,先將方程聯(lián)立消元,得到一個一元二次方程之后,令其中的判別式為,則有;注:如果圓心的位置在原點,可使用公式去解直線與圓相切的問題,其中表示切點坐標,r表示半徑。 (3)過圓上一點的切線方程:圓x2+y2=r2,圓上一點為(x0,y0),則過此點的切線方程為 (課本命題)圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2 (課本命題的推廣)4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設圓,兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 湖北省公安縣博雅中學高一數(shù)學第四章圓與方程知識小結