亚洲欧美国产制服另类,日韩1区久久久久久久久久,亚洲欧美中文日韩aⅴ,不卡AV在线网址

    歡迎來到匯文網(wǎng)! | 幫助中心 匯文網(wǎng)——高品質(zhì)閱讀,高比例分成!
    匯文網(wǎng)

    (完整word版)最新人教版九年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)史上最全(word文檔良心出品).doc

    收藏

    編號:21240156    類型:共享資源    大?。?span id="ckivith" class="font-tahoma">423.80KB    格式:DOC    上傳時間:2022-11-14
    9
    積分
    關(guān) 鍵 詞:
    完整 word 新人 九年級 數(shù)學(xué) 上冊 知識點(diǎn) 總結(jié) 史上最全 文檔 良心 出品
    資源描述:
    數(shù)學(xué)上冊知識點(diǎn)總結(jié) 21.1 一元二次方程 知識點(diǎn)一 一元二次方程的定義 等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。 注意一下幾點(diǎn): ① 只含有一個未知數(shù);②未知數(shù)的最高次數(shù)是2;③是整式方程。 知識點(diǎn)二 一元二次方程的一般形式 一般形式:ax2 + bx + c = 0(a ≠ 0).其中,ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。 知識點(diǎn)三 一元二次方程的根 使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定義是解方程過程中驗(yàn)根的依據(jù)。 21.2 降次——解一元二次方程 21.2.1 配方法 知識點(diǎn)一 直接開平方法解一元二次方程 (1) 如果方程的一邊可以化成含未知數(shù)的代數(shù)式的平方,另一邊是非負(fù)數(shù),可以直接開平方。一般地,對于形如x2=a(a≥0)的方程,根據(jù)平方根的定義可解得x1=,x2=. (2) 直接開平方法適用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接開平方法。 (3) 用直接開平方法求一元二次方程的根,要正確運(yùn)用平方根的性質(zhì),即正數(shù)的平方根有兩個,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。 (4) 直接開平方法解一元二次方程的步驟是:①移項(xiàng);②使二次項(xiàng)系數(shù)或含有未知數(shù)的式子的平方項(xiàng)的系數(shù)為1;③兩邊直接開平方,使原方程變?yōu)閮蓚€一元二次方程;④解一元一次方程,求出原方程的根。 知識點(diǎn)二 配方法解一元二次方程 通過配成完全平方形式來解一元二次方程的方法,叫做配方法,配方的目的是降次,把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解。 配方法的一般步驟可以總結(jié)為:一移、二除、三配、四開。 (1) 把常數(shù)項(xiàng)移到等號的右邊; ⑵方程兩邊都除以二次項(xiàng)系數(shù); ⑶ 方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把左邊配成完全平方式; ⑷ 若等號右邊為非負(fù)數(shù),直接開平方求出方程的解。 21.2.2 公式法 知識點(diǎn)一 公式法解一元二次方程 (1) 一般地,對于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的兩個根為x=,這個公式叫做一元二次方程的求根公式,利用求根公式,我們可以由一元二方程的系數(shù)a,b,c的值直接求得方程的解,這種解方程的方法叫做公式法。 (2) 一元二次方程求根公式的推導(dǎo)過程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的過程。 (3) 公式法解一元二次方程的具體步驟: ① 方程化為一般形式:ax2+bx+c=0(a≠0),一般a化為正值 ②確定公式中a,b,c的值,注意符號; ③求出b2-4ac的值; ④若b2-4ac≥0,則把a(bǔ),b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,則方程無實(shí)數(shù)根。 知識點(diǎn)二 一元二次方程根的判別式 式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判別式,通常用希臘字母△表示它,即△=b2-4ac. △>0,方程ax2+bx+c=0(a≠0)有兩個不相等的實(shí)數(shù)根 一元二次方程 △=0,方程ax2+bx+c=0(a≠0)有兩個相等的實(shí)數(shù)根 根的判別式 △<0,方程ax2+bx+c=0(a≠0)無實(shí)數(shù)根 21.2.3 因式分解法 知識點(diǎn)一 因式分解法解一元二次方程 (1) 把一元二次方程的一邊化為0,而另一邊分解成兩個一次因式的積,進(jìn)而轉(zhuǎn)化為求兩個求一元一次方程的解,這種解方程的方法叫做因式分解法。 (2) 因式分解法的詳細(xì)步驟: ① 移項(xiàng),將所有的項(xiàng)都移到左邊,右邊化為0; ② 把方程的左邊分解成兩個因式的積,可用的方法有提公因式、平方差公式和完全平方公式; ③ 令每一個因式分別為零,得到一元一次方程; ④ 解一元一次方程即可得到原方程的解。 知識點(diǎn)二 用合適的方法解一元一次方程 方法名稱 理論依據(jù) 適用范圍 直接開平方法 平方根的意義 形如x2=p或(mx+n)2=p(p≥0) 配方法 完全平方公式 所有一元二次方程 公式法 配方法 所有一元二次方程 因式分解法 當(dāng)ab=0,則a=0或b=0 一邊為0,另一邊易于分解成兩個一次因式的積的一元二次方程。 21.2.4 一元二次方程的根與系數(shù)的關(guān)系 若一元二次方程x2+px+q=0的兩個根為x1,x2,則有x1+x2=-p,x1x2=q. 若一元二次方程a2x+bx+c=0(a≠0)有兩個實(shí)數(shù)根x1,x2,則有x1+x2=,,x1x2= 22.3 實(shí)際問題與一元二次方程 知識點(diǎn)一 列一元二次方程解應(yīng)用題的一般步驟: (1) 審:是指讀懂題目,弄清題意,明確哪些是已知量,哪些是未知量以及它們之間的等量關(guān)系。 (2) 設(shè):是指設(shè)元,也就是設(shè)出未知數(shù)。 (3) 列:就是列方程,這是關(guān)鍵步驟,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個相等含義,然后列代數(shù)式表示這個相等關(guān)系中的各個量,就得到含有未知數(shù)的等式,即方程。 (4) 解:就是解方程,求出未知數(shù)的值。 (5) 驗(yàn):是指檢驗(yàn)方程的解是否保證實(shí)際問題有意義,符合題意。 (6) 答:寫出答案。 知識點(diǎn)二 列一元二次方程解應(yīng)用題的幾種常見類型 (1) 數(shù)字問題 三個連續(xù)整數(shù):若設(shè)中間的一個數(shù)為x,則另兩個數(shù)分別為x-1,x+1。 三個連續(xù)偶數(shù)(奇數(shù)):若中間的一個數(shù)為x,則另兩個數(shù)分別為x-2,x+2。 三位數(shù)的表示方法:設(shè)百位、十位、個位上的數(shù)字分別為a,b,c,則這個三位數(shù)是100a+10b+c. (2) 增長率問題 設(shè)初始量為a,終止量為b,平均增長率或平均降低率為x,則經(jīng)過兩次的增長或降低后的等量關(guān)系為a(1)2=b。 (3)利潤問題 利潤問題常用的相等關(guān)系式有:①總利潤=總銷售價-總成本;②總利潤=單位利潤×總銷售量;③利潤=成本×利潤率 (4)圖形的面積問題 根據(jù)圖形的面積與圖形的邊、高等相關(guān)元素的關(guān)系,將圖形的面積用含有未知數(shù)的代數(shù)式表示出來,建立一元二次方程。 二次函數(shù)知識點(diǎn)歸納及相關(guān)典型題 第一部分 基礎(chǔ)知識 1.定義:一般地,如果是常數(shù),,那么叫做的二次函數(shù). 2.二次函數(shù)的性質(zhì) (1)拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),對稱軸是軸. (2)函數(shù)的圖像與的符號關(guān)系. ①當(dāng)時拋物線開口向上頂點(diǎn)為其最低點(diǎn); ②當(dāng)時拋物線開口向下頂點(diǎn)為其最高點(diǎn). (3)頂點(diǎn)是坐標(biāo)原點(diǎn),對稱軸是軸的拋物線的解析式形式為. 3.二次函數(shù) 的圖像是對稱軸平行于(包括重合)軸的拋物線. 4.二次函數(shù)用配方法可化成:的形式,其中. 5.二次函數(shù)由特殊到一般,可分為以下幾種形式:①;②;③;④;⑤. 6.拋物線的三要素:開口方向、對稱軸、頂點(diǎn). ①的符號決定拋物線的開口方向:當(dāng)時,開口向上;當(dāng)時,開口向下; 相等,拋物線的開口大小、形狀相同. ②平行于軸(或重合)的直線記作.特別地,軸記作直線. 7.頂點(diǎn)決定拋物線的位置.幾個不同的二次函數(shù),如果二次項(xiàng)系數(shù)相同,那么拋物線的開口方向、開口大小完全相同,只是頂點(diǎn)的位置不同. 8.求拋物線的頂點(diǎn)、對稱軸的方法 (1)公式法:,∴頂點(diǎn)是,對稱軸是直線. (2)配方法:運(yùn)用配方的方法,將拋物線的解析式化為的形式,得到頂點(diǎn)為(,),對稱軸是直線. (3)運(yùn)用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點(diǎn)是頂點(diǎn). 用配方法求得的頂點(diǎn),再用公式法或?qū)ΨQ性進(jìn)行驗(yàn)證,才能做到萬無一失. 9.拋物線中,的作用 (1)決定開口方向及開口大小,這與中的完全一樣. (2)和共同決定拋物線對稱軸的位置.由于拋物線的對稱軸是直線 ,故:①時,對稱軸為軸;②(即、同號)時,對稱軸在軸左側(cè);③(即、異號)時,對稱軸在軸右側(cè). (3)的大小決定拋物線與軸交點(diǎn)的位置. 當(dāng)時,,∴拋物線與軸有且只有一個交點(diǎn)(0,): ①,拋物線經(jīng)過原點(diǎn); ②,與軸交于正半軸;③,與軸交于負(fù)半軸. 以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時,仍成立.如拋物線的對稱軸在軸右側(cè),則 . 10.幾種特殊的二次函數(shù)的圖像特征如下: 函數(shù)解析式 開口方向 對稱軸 頂點(diǎn)坐標(biāo) 當(dāng)時 開口向上 當(dāng)時 開口向下 (軸) (0,0) (軸) (0, ) (,0) (,) () 11.用待定系數(shù)法求二次函數(shù)的解析式 (1)一般式:.已知圖像上三點(diǎn)或三對、的值,通常選擇一般式. (2)頂點(diǎn)式:.已知圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)式. (3)交點(diǎn)式:已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:. 12.直線與拋物線的交點(diǎn) (1)軸與拋物線得交點(diǎn)為(0, ). (2)與軸平行的直線與拋物線有且只有一個交點(diǎn)(,). (3)拋物線與軸的交點(diǎn) 二次函數(shù)的圖像與軸的兩個交點(diǎn)的橫坐標(biāo)、,是對應(yīng)一元二次方程的兩個實(shí)數(shù)根.拋物線與軸的交點(diǎn)情況可以由對應(yīng)的一元二次方程的根的判別式判定: ①有兩個交點(diǎn)拋物線與軸相交; ②有一個交點(diǎn)(頂點(diǎn)在軸上)拋物線與軸相切; ③沒有交點(diǎn)拋物線與軸相離. (4)平行于軸的直線與拋物線的交點(diǎn) 同(3)一樣可能有0個交點(diǎn)、1個交點(diǎn)、2個交點(diǎn).當(dāng)有2個交點(diǎn)時,兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為,則橫坐標(biāo)是的兩個實(shí)數(shù)根. (5)一次函數(shù)的圖像與二次函數(shù)的圖像的交點(diǎn),由方程組 的解的數(shù)目來確定:①方程組有兩組不同的解時與有兩個交點(diǎn); ②方程組只有一組解時與只有一個交點(diǎn);③方程組無解時與沒有交點(diǎn). (6)拋物線與軸兩交點(diǎn)之間的距離:若拋物線與軸兩交點(diǎn)為,由于、是方程的兩個根,故 第二十三章 旋轉(zhuǎn) 23.1 圖形的旋轉(zhuǎn) 知識點(diǎn)一 旋轉(zhuǎn)的定義 在平面內(nèi),把一個平面圖形繞著平面內(nèi)某一點(diǎn)O轉(zhuǎn)動一個角度,就叫做圖形的旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。 我們把旋轉(zhuǎn)中心、旋轉(zhuǎn)角度、旋轉(zhuǎn)方向稱為旋轉(zhuǎn)的三要素。 知識點(diǎn)二 旋轉(zhuǎn)的性質(zhì) 旋轉(zhuǎn)的特征:(1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;(2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(3)旋轉(zhuǎn)前后的圖形全等。 理解以下幾點(diǎn): (1) 圖形中的每一個點(diǎn)都繞旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度。(2)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段相等,對應(yīng)角相等。(3)圖形的大小和形狀都沒有發(fā)生改變,只改變了圖形的位置。 知識點(diǎn)三 利用旋轉(zhuǎn)性質(zhì)作圖 旋轉(zhuǎn)有兩條重要性質(zhì):(1)任意一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(2)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,它是利用旋轉(zhuǎn)的性質(zhì)作圖的關(guān)鍵。步驟可分為: ①連:即連接圖形中每一個關(guān)鍵點(diǎn)與旋轉(zhuǎn)中心; ②轉(zhuǎn):即把直線按要求繞旋轉(zhuǎn)中心轉(zhuǎn)過一定角度(作旋轉(zhuǎn)角) ③截:即在角的另一邊上截取關(guān)鍵點(diǎn)到旋轉(zhuǎn)中心的距離,得到各點(diǎn)的對應(yīng)點(diǎn); ④接:即連接到所連接的各點(diǎn)。 23.2 中心對稱 知識點(diǎn)一 中心對稱的定義 中心對稱:把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)對稱或中心對稱,這個點(diǎn)叫做對稱中心。 注意以下幾點(diǎn): 中心對稱指的是兩個圖形的位置關(guān)系;只有一個對稱中心;繞對稱中心旋轉(zhuǎn)180°兩個圖形能夠完全重合。 知識點(diǎn)二 作一個圖形關(guān)于某點(diǎn)對稱的圖形 要作出一個圖形關(guān)于某一點(diǎn)的成中心對稱的圖形,關(guān)鍵是作出該圖形上
    展開閱讀全文
    提示  匯文網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
    關(guān)于本文
    本文標(biāo)題:(完整word版)最新人教版九年級數(shù)學(xué)上冊知識點(diǎn)總結(jié)史上最全(word文檔良心出品).doc
    鏈接地址:http://zhizhaikeji.com/p-21240156.html
    關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

    客服QQ:2660337891點(diǎn)擊這里給我發(fā)消息

    手機(jī):13423958347
     匯文網(wǎng)版權(quán)所有  聯(lián)系郵箱:2660337891#qq.com (請把#改為@)  
      鄂ICP備2022007403號,本站可開發(fā)票,需開票聯(lián)系客服QQ。

    收起
    展開