湖北省公安縣博雅中學高一數(shù)學《第二章空間點、直線、平面的位置關系》知識要點(通用).doc
《湖北省公安縣博雅中學高一數(shù)學《第二章空間點、直線、平面的位置關系》知識要點(通用).doc》由會員分享,可在線閱讀,更多相關《湖北省公安縣博雅中學高一數(shù)學《第二章空間點、直線、平面的位置關系》知識要點(通用).doc(3頁珍藏版)》請在匯文網(wǎng)上搜索。
1、空間點、直線、平面的位置關系1、平面的概念及空間點、直線、平面的位置關系(1)平面 平面的概念: A.描述性說明; B.平面是無限伸展的; 平面的表示:通常用希臘字母、表示,如平面(通常寫在一個銳角內(nèi));也可以用兩個相對頂點的字母來表示,如平面BC。 點與平面的關系:點A在平面內(nèi),記作;點不在平面內(nèi),記作點與直線的關系:點A的直線l上,記作:Al; 點A在直線l外,記作Al;直線與平面的關系:直線l在平面內(nèi),記作l;直線l不在平面內(nèi),記作l。(2)公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。(即直線在平面內(nèi),或者平面經(jīng)過直線)應用:檢驗桌面是否平; 判斷直線是
2、否在平面內(nèi)用符號語言表示公理1:(3)公理2:經(jīng)過不在同一條直線上的三點,有且只有一個平面。推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理2及其推論作用:它是空間內(nèi)確定平面的依據(jù) 它是證明平面重合的依據(jù)(4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線符號:平面和相交,交線是a,記作a。符號語言:公理3的作用:它是判定兩個平面相交的方法。它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的
3、位置關系 異面直線定義:不同在任何一個平面內(nèi)的兩條直線 異面直線性質(zhì):既不平行,又不相交。 異面直線判定:過面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線 異面直線所成角:直線a、b是異面直線,經(jīng)過空間任意一點O,分別引直線aa,bb,則把直線a和b所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0,90,若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。說明:(1)判定空間直線是異面直線方法:根據(jù)異面直線的定義;異面直線的判定定理(2)在異面直線所成角定義中,空間一點O是任取的,而和點O的位置無關。求異面直線所成角步驟:A、利用定義構造角,
4、可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。(8)空間直線與平面之間的位置關系直線在平面內(nèi)有無數(shù)個公共點三種位置關系的符號表示:a aA a(9)平面與平面之間的位置關系:平行沒有公共點;相交有一條公共直線。b2、空間中的平行問題(1)直線與平面平行的判定及其性質(zhì)線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。 線線平行線面平行線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 第二章空間點、直線、平面的位置關系 湖北省 公安縣 博雅 中學 數(shù)學 第二 空間 直線 平面 位置 關系 知識 要點 通用