2023年初中幾何知識點總結空間與圖形知識點總結.doc
《2023年初中幾何知識點總結空間與圖形知識點總結.doc》由會員分享,可在線閱讀,更多相關《2023年初中幾何知識點總結空間與圖形知識點總結.doc(8頁珍藏版)》請在匯文網上搜索。
1、初中幾何知識點總結:空間與圖形知識點總結今天小編為大家整理了一篇有關初中幾何知識點總結:空間與圖形知識點總結的相關內容,以供大家閱讀!圖形的認識(1)角角平分線的性質:角平分線上的點到角的兩邊距離相等,角的內部到兩邊距離相等的點在角平分線上。(2)相交線與平行線同角或等角的補角相等,同角或等角的余角相等;對頂角的性質:對頂角相等垂線的性質:過一點有且只有一條直線與已知直線垂直;直線外一點有與直線上各點連結的所有線段中,垂線段最短;線段垂直平分線定義:過線段的中點并且垂直于線段的直線叫做線段的垂直平分線;線段垂直平分線的性質:線段垂直平分線上的點到線段兩端點的距離相等,到線段兩端點的距離相等的點
2、在線段的垂直平分線;平行線的定義:在同一平面內不相交的兩條直線叫做平行線;平行線的判定:同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行;平行線的特征:兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補;平行公理:經過直線外一點有且只有一條直線平行于已知直線。(3)三角形三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;三角形的內角和定理:三角形的三個內角的和等于;三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角;三角形的三條角平分線交于一點
3、(內心);三角形的三邊的垂直平分線交于一點(外心);三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;全等三角形的判定:邊角邊公理(SAS)角邊角公理(ASA)角角邊定理(AAS)邊邊邊公理(SSS)斜邊、直角邊公理(HL)等腰三角形的性質:等腰三角形的兩個底角相等;等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)等腰三角形的判定:有兩個角相等的三角形是等腰三角形;直角三角形的性質:直角三角形的兩個銳角互為余角;直角三角形斜邊上的中線等于斜邊的一半;直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);直角三角形中角所對的直角邊等于斜邊的一半;直角
4、三角形的判定:有兩個角互余的三角形是直角三角形;如果三角形的三邊長a、b、c有下面關系,那么這個三角形是直角三角形(勾股定理的逆定理)。(4)四邊形多邊形的內角和定理:n邊形的內角和等于(n3,n是正整數(shù));平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分;平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。矩形的性質:(除具有平行四邊形所有性質外)矩形的四個角都是直角;矩形的對角線相等;矩形的判定:有三個角是直角的四邊形是矩形;對角線相
5、等的平行四邊形是矩形;菱形的特征:(除具有平行四邊形所有性質外菱形的四邊相等;菱形的對角線互相垂直平分,并且每一條對角線平分一組對角;菱形的判定:四邊相等的四邊形是菱形;正方形的特征:正方形的四邊相等;正方形的四個角都是直角;正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;正方形的判定:有一個角是直角的菱形是正方形;有一組鄰邊相等的矩形是正方形。等腰梯形的特征:等腰梯形同一底邊上的兩個內角相等等腰梯形的兩條對角線相等。等腰梯形的判定:同一底邊上的兩個內角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形。平面圖形的鑲嵌:任意一個三角形、四邊形或正六邊形可以鑲嵌平面;(5)圓
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2023 年初 幾何 知識點 總結 空間 圖形