勾股定理全章知識(shí)點(diǎn)歸納總結(jié)(總9頁).doc
《勾股定理全章知識(shí)點(diǎn)歸納總結(jié)(總9頁).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《勾股定理全章知識(shí)點(diǎn)歸納總結(jié)(總9頁).doc(9頁珍藏版)》請?jiān)趨R文網(wǎng)上搜索。
1、勾股定理全章知識(shí)點(diǎn)歸納總結(jié)一基礎(chǔ)知識(shí)點(diǎn):1:勾股定理直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2c2)要點(diǎn)詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,則,)(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以證明線段平方關(guān)系的問題2:勾股定理的逆定理如果三角形的三邊長:a、b、c,則有關(guān)系a2+b2c2,那么這個(gè)三角形是直角三角形。要點(diǎn)詮釋:勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一
2、定理時(shí)應(yīng)注意:(1)首先確定最大邊,不妨設(shè)最長邊長為:c;(2)驗(yàn)證c2與a2+b2是否具有相等關(guān)系,若c2a2+b2,則ABC是以C為直角的直角三角形(若c2a2+b2,則ABC是以C為鈍角的鈍角三角形;若c2a2+b2,則ABC為銳角三角形)。(定理中,及只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長,滿足,那么以,為三邊的三角形是直角三角形,但是為斜邊)3:勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理;聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反,都與直角三角形有關(guān)。4:互逆命題的概念如果一個(gè)命題的題設(shè)和結(jié)論分別是另一個(gè)命題的結(jié)論和
3、題設(shè),這樣的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。規(guī)律方法指導(dǎo)1勾股定理的證明實(shí)際采用的是圖形面積與代數(shù)恒等式的關(guān)系相互轉(zhuǎn)化證明的。2勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。3勾股定理在應(yīng)用時(shí)一定要注意弄清誰是斜邊誰直角邊,這是這個(gè)知識(shí)在應(yīng)用過程中易犯的主要錯(cuò)誤。4. 勾股定理的逆定理:如果三角形的三條邊長a,b,c有下列關(guān)系:a2+b2c2,那么這個(gè)三角形是直角三角形;該逆定理給出判定一個(gè)三角形是否是直角三角形的判定方法5.應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形的過程主要是進(jìn)行代數(shù)運(yùn)算,通過學(xué)習(xí)加深
4、對“數(shù)形結(jié)合”的理解我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 5:勾股定理的證明勾股定理的證明方法很多,常見的是拼圖的方法用拼圖的方法驗(yàn)證勾股定理的思路是圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見方法如下:方法一:,化簡可證方法二:四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積四個(gè)直角三角形的面積與小正方形面積的和為大正方形面積為 所以方法三:,化簡得證6:勾股數(shù)能夠構(gòu)成直角三角形的三邊長的三個(gè)正整數(shù)稱為勾股數(shù),即中
5、,為正整數(shù)時(shí),稱,為一組勾股數(shù)記住常見的勾股數(shù)可以提高解題速度,如;等用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))二、經(jīng)典例題精講題型一:直接考查勾股定理例.在中,已知,求的長已知,求的長分析:直接應(yīng)用勾股定理解:題型二:利用勾股定理測量長度例題1 如果梯子的底端離建筑物9米,那么15米長的梯子可以到達(dá)建筑物的高度是多少米?解析:這是一道大家熟知的典型的“知二求一”的題。把實(shí)物模型轉(zhuǎn)化為數(shù)學(xué)模型后,.已知斜邊長和一條直角邊長,求另外一條直角邊的長度,可以直接利用勾股定理!根據(jù)勾股定理AC2+BC2=AB2, 即AC2+92=152,所以AC2=144,所以AC=12.
6、例題2 如圖(8),水池中離岸邊D點(diǎn)1.5米的C處,直立長著一根蘆葦,出水部分BC的長是0.5米,把蘆葦拉到岸邊,它的頂端B恰好落到D點(diǎn),并求水池的深度AC.解析:同例題1一樣,先將實(shí)物模型轉(zhuǎn)化為數(shù)學(xué)模型,如圖2. 由題意可知ACD中,ACD=90,在RtACD中,只知道CD=1.5,這是典型的利用勾股定理“知二求一”的類型。標(biāo)準(zhǔn)解題步驟如下(僅供參考):解:如圖2,根據(jù)勾股定理,AC2+CD2=AD2 設(shè)水深A(yù)C= x米,那么AD=AB=AC+CB=x+0.5x2+1.52=( x+0.5)2解之得x=2.故水深為2米.題型三:勾股定理和逆定理并用例題3 如圖3,正方形ABCD中,E是BC邊
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 勾股定理 知識(shí)點(diǎn) 歸納 總結(jié)