勾股定理全章知識點歸納總結(jié) .doc
《勾股定理全章知識點歸納總結(jié) .doc》由會員分享,可在線閱讀,更多相關(guān)《勾股定理全章知識點歸納總結(jié) .doc(9頁珍藏版)》請在匯文網(wǎng)上搜索。
1、勾股定理全章知識點歸納總結(jié)一基礎(chǔ)知識點:1:勾股定理直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2c2)要點詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,則,)(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以證明線段平方關(guān)系的問題2:勾股定理的逆定理如果三角形的三邊長:a、b、c,則有關(guān)系a2+b2c2,那么這個三角形是直角三角形。要點詮釋:勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一
2、定理時應(yīng)注意:(1)首先確定最大邊,不妨設(shè)最長邊長為:c;(2)驗證c2與a2+b2是否具有相等關(guān)系,若c2a2+b2,則ABC是以C為直角的直角三角形(若c2a2+b2,則ABC是以C為鈍角的鈍角三角形;若c2a2+b2,則ABC為銳角三角形)。(定理中,及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長,滿足,那么以,為三邊的三角形是直角三角形,但是為斜邊)3:勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理;聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反,都與直角三角形有關(guān)。4:互逆命題的概念如果一個命題的題設(shè)和結(jié)論分別是另一個命題的結(jié)論和
3、題設(shè),這樣的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。規(guī)律方法指導(dǎo)1勾股定理的證明實際采用的是圖形面積與代數(shù)恒等式的關(guān)系相互轉(zhuǎn)化證明的。2勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。3勾股定理在應(yīng)用時一定要注意弄清誰是斜邊誰直角邊,這是這個知識在應(yīng)用過程中易犯的主要錯誤。4. 勾股定理的逆定理:如果三角形的三條邊長a,b,c有下列關(guān)系:a2+b2c2,那么這個三角形是直角三角形;該逆定理給出判定一個三角形是否是直角三角形的判定方法5.應(yīng)用勾股定理的逆定理判定一個三角形是不是直角三角形的過程主要是進行代數(shù)運算,通過學(xué)習(xí)加深
4、對“數(shù)形結(jié)合”的理解我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 5:勾股定理的證明勾股定理的證明方法很多,常見的是拼圖的方法用拼圖的方法驗證勾股定理的思路是圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見方法如下:方法一:,化簡可證方法二:四個直角三角形的面積與小正方形面積的和等于大正方形的面積四個直角三角形的面積與小正方形面積的和為大正方形面積為 所以方法三:,化簡得證6:勾股數(shù)能夠構(gòu)成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù),即中
5、,為正整數(shù)時,稱,為一組勾股數(shù)記住常見的勾股數(shù)可以提高解題速度,如;等用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))二、經(jīng)典例題精講題型一:直接考查勾股定理例.在中,已知,求的長已知,求的長分析:直接應(yīng)用勾股定理解:題型二:利用勾股定理測量長度例題1 如果梯子的底端離建筑物9米,那么15米長的梯子可以到達建筑物的高度是多少米?解析:這是一道大家熟知的典型的“知二求一”的題。把實物模型轉(zhuǎn)化為數(shù)學(xué)模型后,.已知斜邊長和一條直角邊長,求另外一條直角邊的長度,可以直接利用勾股定理!根據(jù)勾股定理AC2+BC2=AB2, 即AC2+92=152,所以AC2=144,所以AC=12.
6、例題2 如圖(8),水池中離岸邊D點1.5米的C處,直立長著一根蘆葦,出水部分BC的長是0.5米,把蘆葦拉到岸邊,它的頂端B恰好落到D點,并求水池的深度AC.解析:同例題1一樣,先將實物模型轉(zhuǎn)化為數(shù)學(xué)模型,如圖2. 由題意可知ACD中,ACD=90,在RtACD中,只知道CD=1.5,這是典型的利用勾股定理“知二求一”的類型。標準解題步驟如下(僅供參考):解:如圖2,根據(jù)勾股定理,AC2+CD2=AD2 設(shè)水深A(yù)C= x米,那么AD=AB=AC+CB=x+0.5x2+1.52=( x+0.5)2解之得x=2.故水深為2米.題型三:勾股定理和逆定理并用例題3 如圖3,正方形ABCD中,E是BC邊
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
10 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 勾股定理全章知識點歸納總結(jié) 勾股定理 知識點 歸納 總結(jié)