《北師大版初中八年級數學定理知識點匯總.doc》由會員分享,可在線閱讀,更多相關《北師大版初中八年級數學定理知識點匯總.doc(4頁珍藏版)》請在匯文網上搜索。
1、北師大版初中數學定理知識點匯總八年級(上冊) 第一章 勾股定理 直角三角形兩直角邊的平和等于斜邊的平方。即: (由直角三角形得到邊的關系) 如果三角形的三邊長a,b,c滿足 ,那么這個三角形是直角三角形。 滿足條件 的三個正整數,稱為勾股數。常見的勾股數組有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);(這些勾股數組的倍數仍是勾股數) 第二章 實數 算術平方根:一般地,如果一個正數x的平方等于a,即x2=a,那么正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a0時,a才有算術平
2、方根。 平方根:一般地,如果一個數x的平方根等于a,即x2=a,那么數x就叫做a的平方根。 正數有兩個平方根(一正一負);0只有一個平方根,就是它本身;負數沒有平方根。 正數的立方根是正數;0的立方根是0;負數的立方根是負數。 第三章 圖形的平移與旋轉 平移:在平面內,將一個圖形沿某個方向移動一定距離,這樣的圖形運動稱為平移。 平移的基本性質:經過平移,對應線段、對應角分別相等;對應點所連的線段平行且相等。 旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。 這個定點叫旋轉中心,轉動的角度叫旋轉角。 旋轉的性質:旋轉后的圖形與原圖形的大小和形狀相同; 旋轉前后
3、兩個圖形的對應點到旋轉中心的距離相等; 對應點到旋轉中心的連線所成的角度彼此相等。 (例:如圖所示,點D、E、F分別為點A、B、C的對應點,經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。) 第四章 四平邊形性質探索 平行四邊的定義:兩線對邊分別平行的四邊形叫做平行四邊形,平行四邊形不相鄰的兩頂點連成的線段叫做它的對角線。 平行四邊形的性質:平行四邊形的對邊相等,對角相等,對角線互相平分。 平行四邊形的判別方法:兩組對邊分別平行的四邊形是平行四邊形。 兩組對邊分別相等的四邊形是平行四邊形。 一組對邊平
4、行且相等的四邊形是平行四邊形。 兩條對角線互相平分的四邊形是平行四邊形。 平行線之間的距離:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等。這個距離稱為平行線之間的距離。 菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。 菱形的性質:具有平行四邊形的性質,且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。 菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。 菱形的判別方法:一組鄰邊相等的平行四邊形是菱形。 對角線互相垂直的平行四邊形是菱形。 四條邊都相等的四邊形是菱形。 矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。 矩形的性質:具有平
5、行四邊形的性質,且對角線相等,四個角都是直角。(矩形是軸對稱圖形,有兩條對稱軸) 矩形的判定:有一個內角是直角的平行四邊形叫矩形(根據定義)。 對角線相等的平行四邊形是矩形。 四個角都相等的四邊形是矩形。 推論:直角三角形斜邊上的中線等于斜邊的一半。 正方形的定義:一組鄰邊相等的矩形叫做正方形。 正方形的性質:正方形具有平行四邊形、矩形、菱形的一切性質。(正方形是軸對稱圖形,有兩條對稱軸) 正方形常用的判定: 有一個內角是直角的菱形是正方形; 鄰邊相等的矩形是正方形; 對角線相等的菱形是正方形; 對角線互相垂直的矩形是正方形。 正方形、矩形、菱形和平行邊形四者之間的關系(如圖3所示): 梯形定
6、義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形。 兩條腰相等的梯形叫做等腰梯形。 一條腰和底垂直的梯形叫做直角梯形。 等腰梯形的性質:等腰梯形同一底上的兩個內角相等,對角線相等。 同一底上的兩個內角相等的梯形是等腰梯形。 多邊形內角和:n邊形的內角和等于(n2)180 多邊形的外角和都等于360 在平面內,一個圖形繞某個點旋轉180,如果旋轉前后的圖形互相重合,那么這個圖開叫做中心對稱圖形。 中心對稱圖形上的每一對對應點所連成的線段被對稱中心平分。 第五章 位置的確定 平面直角坐標系概念:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系,水平的數軸叫x軸或橫軸;鉛垂的數軸叫y軸或
7、縱軸,兩數軸的交點O稱為原點。 點的坐標:在平面內一點P,過P向x軸、y軸分別作垂線,垂足在x軸、y軸上對應的數a、b分別叫P點的橫坐標和縱坐標,則有序實數對(a、b)叫做P點的坐標。 在直角坐標系中如何根據點的坐標,找出這個點(如圖4所示),方法是由P(a、b),在x軸上找到坐標為a的點A,過A作x軸的垂線,再在y軸上找到坐標為b的點B,過B作y軸的垂線,兩垂線的交點即為所找的P點。 如何根據已知條件建立適當的直角坐標系? 根據已知條件建立坐標系的要求是盡量使計算方便,一般地沒有明確的方法,但有以下幾條常用的方法:以某已知點為原點,使它坐標為(0,0);以圖形中某線段所在直線為x軸(或y軸)
8、;以已知線段中點為原點;以兩直線交點為原點;利用圖形的軸對稱性以對稱軸為y軸等。 圖形“縱橫向伸縮”的變化規(guī)律: A、將圖形上各個點的坐標的縱坐標不變,而橫坐標分別變成原來的n倍時,所得的圖形比原來的圖形在橫向:當n1時,伸長為原來的n倍;當0n1時, 伸長為原來的n倍;當0n0)或向左(a0)或向下(b0),所得的圖形與原圖形相比,形狀不變;當n1時,對應線段大小擴大到原來的n倍;當0n0時,y隨x的增大而增大; 當k0時,y隨x的增大而減小。 第七章 二元一次方程組 含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。 兩個一次方程所組成的一組方程叫做二元一次方程組。 解
9、二元一次方程組:代入消元法; 加減消元法(無論是代入消元法還是加減消元法,其目的都是將“二元一次方程”變?yōu)椤耙辉淮畏匠獭保^之“消元”) 在利用方程來解應用題時,主要分為兩個步驟:設未知數(在設未知數時,大多數情況只要設問題為x或y;但也有時也須根據已知條件及等量關系等諸多方面考慮);尋找等量關系(一般地,題目中會含有一表述等量關系的句子,只須找到此句話即可根據其列出方程)。 處理問題的過程可以進一步概括為: 第八章 數據的代表 加權平均數:一組數據 的權分加為 ,則稱 為這n個數的加權平均數。 (如:對某同學的數學、語文、科學三科的考查,成績分別為72,50,88,而三項成績的“權”分別為4、3、1,則加權平均數為: ) 一般地,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。 一組數據中出現次數最多的那個數據叫做這組數據的眾數。 眾數著眼于對各數據出現次數的考察,中位數首先要將數據按大小順序排列,而且要注意當數據個數為奇數時,中間的那個數據就是中位數;當數據個數為偶數時,居于中間的兩個數據的平均數才是中位數,特別要注意一組數據的平均數和中位數是唯一的,但眾數則不一定是唯一的。