高中數(shù)學知識點總結(jié)(共48頁).doc
《高中數(shù)學知識點總結(jié)(共48頁).doc》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學知識點總結(jié)(共48頁).doc(48頁珍藏版)》請在匯文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高中數(shù)學知識點總結(jié) 1. 對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。 中元素各表示什么? 注重借助于數(shù)軸和文氏圖解集合問題。 空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性質(zhì): (3)德摩根定律: 4. 你會用補集思想解決問題嗎?(排除法、間接法) 的取值范圍。 6. 命題的四種形式及其相互關(guān)系是什么? (互為逆否關(guān)系的命題是等價命題。) 原命題與逆否命題同真、同假;逆命題與否命題同真同假。 7. 對映射的概念了解嗎?映射f:AB,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射? (一對一,多
2、對一,允許B中有元素無原象。) 8. 函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同? (定義域、對應(yīng)法則、值域) 9. 求函數(shù)的定義域有哪些常見類型? 10. 如何求復合函數(shù)的定義域? 義域是_。 11. 求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎? 12. 反函數(shù)存在的條件是什么? (一一對應(yīng)函數(shù)) 求反函數(shù)的步驟掌握了嗎? (反解x;互換x、y;注明定義域) 13. 反函數(shù)的性質(zhì)有哪些? 互為反函數(shù)的圖象關(guān)于直線yx對稱; 保存了原來函數(shù)的單調(diào)性、奇函數(shù)性; 14. 如何用定義證明函數(shù)的單調(diào)性? (取值、作差、判正負) 如何判斷復合函數(shù)的單調(diào)性? ) 15. 如何利用導數(shù)
3、判斷函數(shù)的單調(diào)性? 值是( ) A. 0B. 1C. 2D. 3 a的最大值為3) 16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么? (f(x)定義域關(guān)于原點對稱) 注意如下結(jié)論: (1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。 17. 你熟悉周期函數(shù)的定義嗎? 函數(shù),T是一個周期。) 如: 18. 你掌握常用的圖象變換了嗎? 注意如下“翻折”變換: 19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎? 的雙曲線。 應(yīng)用:“三個二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系二次方程 求閉區(qū)間m,n上的最值。 求區(qū)間定(動),對稱軸
4、動(定)的最值問題。 一元二次方程根的分布問題。 由圖象記性質(zhì)! (注意底數(shù)的限定?。?利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么? 20. 你在基本運算上常出現(xiàn)錯誤嗎? 21. 如何解抽象函數(shù)問題? (賦值法、結(jié)構(gòu)變換法) 22. 掌握求函數(shù)值域的常用方法了嗎? (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導數(shù)法等。) 如求下列函數(shù)的最值: 23. 你記得弧度的定義嗎?能寫出圓心角為,半徑為R的弧長公式和扇形面積公式嗎? 24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義 25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學 知識點 總結(jié) 48