題型最全的遞推數(shù)列求通項公式的習(xí)題(總5頁).doc
《題型最全的遞推數(shù)列求通項公式的習(xí)題(總5頁).doc》由會員分享,可在線閱讀,更多相關(guān)《題型最全的遞推數(shù)列求通項公式的習(xí)題(總5頁).doc(5頁珍藏版)》請在匯文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高考遞推數(shù)列題型分類歸納解析 各種數(shù)列問題在很多情形下,就是對數(shù)列通項公式的求解。特別是在一些綜合性比較強的數(shù)列問題中,數(shù)列通項公式的求解問題往往是解決數(shù)列難題的瓶頸。我現(xiàn)在總結(jié)出幾種求解數(shù)列通項公式的方法,希望能對大家有幫助。類型1 解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1. 已知數(shù)列滿足,求。變式: 已知數(shù)列,且a2k=a2k1+(1)k, a2k+1=a2k+3k, 其中k=1,2,3,.(I)求a3, a5;(II)求 an的通項公式.類型2 解法:把原遞推公式轉(zhuǎn)化為,利用累乘法(逐商相乘法)求解。例1:已知數(shù)列滿足,求。例2:已知, ,求
2、。變式:(2004,全國I,理15)已知數(shù)列an,滿足a1=1, (n2),則an的通項 類型3 (其中p,q均為常數(shù),)。解法(待定系數(shù)法):把原遞推公式轉(zhuǎn)化為:,其中,再利用換元法轉(zhuǎn)化為等比數(shù)列求解。例:已知數(shù)列中,求.變式:(2006,重慶,文,14)在數(shù)列中,若,則該數(shù)列的通項_變式:(2006. 福建.理22.本小題滿分14分)已知數(shù)列滿足(I)求數(shù)列的通項公式;(II)若數(shù)列bn滿足證明:數(shù)列bn是等差數(shù)列;()證明:類型4 (其中p,q均為常數(shù),)。 (或,其中p,q, r均為常數(shù)) 。解法:一般地,要先在原遞推公式兩邊同除以,得:引入輔助數(shù)列(其中),得:再待定系數(shù)法解決。例:
3、已知數(shù)列中,,,求。變式:(2006,全國I,理22,本小題滿分12分)設(shè)數(shù)列的前項的和,()求首項與通項;()設(shè),證明:類型5 遞推公式為(其中p,q均為常數(shù))。解法一(待定系數(shù)法):先把原遞推公式轉(zhuǎn)化為其中s,t滿足解法二(特征根法):對于由遞推公式,給出的數(shù)列,方程,叫做數(shù)列的特征方程。若是特征方程的兩個根,當(dāng)時,數(shù)列的通項為,其中A,B由決定(即把和,代入,得到關(guān)于A、B的方程組);當(dāng)時,數(shù)列的通項為,其中A,B由決定(即把和,代入,得到關(guān)于A、B的方程組)。解法一(待定系數(shù)迭加法):數(shù)列:, ,求數(shù)列的通項公式。例:已知數(shù)列中,,,求。變式:1.已知數(shù)列滿足(I)證明:數(shù)列是等比數(shù)列
4、;(II)求數(shù)列的通項公式;(III)若數(shù)列滿足證明是等差數(shù)列 2.已知數(shù)列中,,,求3.已知數(shù)列中,是其前項和,并且,設(shè)數(shù)列,求證:數(shù)列是等比數(shù)列;設(shè)數(shù)列,求證:數(shù)列是等差數(shù)列;求數(shù)列的通項公式及前項和。類型6 遞推公式為與的關(guān)系式。(或)解法:這種類型一般利用與消去 或與消去進行求解。例:已知數(shù)列前n項和.(1)求與的關(guān)系;(2)求通項公式.(2)應(yīng)用類型4(其中p,q均為常數(shù),)的方法,上式兩邊同乘以得:由.于是數(shù)列是以2為首項,2為公差的等差數(shù)列,所以變式:(2006,陜西,理,20本小題滿分12分) 已知正項數(shù)列an,其前n項和Sn滿足10Sn=an2+5an+6且a1,a3,a15
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 題型 數(shù)列 求通項 公式 習(xí)題