一元二次不等式、高次不等式、分式不等式解法(共7頁).doc
《一元二次不等式、高次不等式、分式不等式解法(共7頁).doc》由會員分享,可在線閱讀,更多相關(guān)《一元二次不等式、高次不等式、分式不等式解法(共7頁).doc(7頁珍藏版)》請在匯文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上課題:一元二次不等式、高次不等式、分式不等式解法目標:1鞏固一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握掌握簡單的分式不等式和特殊的高次不等式的解法;2培養(yǎng)數(shù)形結(jié)合的能力,一題多解的能力,培養(yǎng)抽象概括能力和邏輯思維能力;3激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)勇于探索的精神,勇于創(chuàng)新精神,同時體會從不同側(cè)面觀察同一事物思想。重點:簡單的分式不等式和特殊的高次不等式的解法。難點:正確串根。過程:一、復(fù)習(xí)引入1一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系。2一元二次不等式的解法步驟。引言:今天我們來研究一元二次不等式的另外解法,以及特殊的高次不等式、分式不等式的解法。二、新課 一
2、元二次不等式與特殊的高次不等式解法例1 解不等式.分析一:利用前節(jié)的方法求解;分析二:由乘法運算的符號法則可知,若原不等式成立,則左邊兩個因式必須異號,原不等式的解集是下面兩個不等式組:與的解集的并集,即x|=x|-4<x<1=x|-4<x<1.書寫時可按下列格式:解二:(x-1)(x+4)<0或x或-4<x<1-4<x<1,原不等式的解集是x|-4<x<1.小結(jié):一元二次不等式的代數(shù)解法:設(shè)一元二次不等式相應(yīng)的方程的兩根為,則;若當時,得或;當時,得.若當時,得;當時,得.分析三:由于不等式的解與相應(yīng)方程的根有關(guān)系,因此可求其
3、根并由相應(yīng)的函數(shù)值的符號表示出來即可求出不等式的解集.解:求根:令(x-1)(x+4)=0,解得x(從小到大排列)分別為-4,1,這兩根將x軸分為三部分:(-,-4)(-4,1)(1,+);分析這三部分中原不等式左邊各因式的符號(-,-4)(-4,1)(1,+)x+4-+x-1-+(x-1)(x+4)+-+由上表可知,原不等式的解集是x|-4<x<1.例2:解不等式:(x-1)(x+2)(x-3)>0;解:檢查各因式中x的符號均正;求得相應(yīng)方程的根為:-2,1,3;列表如下:-2 1 3x+2-+x-1-+x-3-+各因式積-+-+由上表可知,原不等式的解集為:x|-2<
4、;x<1或x>3.小結(jié):此法叫列表法,解題步驟是:將不等式化為(x-x1)(x-x2)(x-xn)>0(<0)形式(各項x的符號化“+”),令(x-x1)(x-x2)(x-xn)=0,求出各根,不妨稱之為分界點,一個分界點把(實數(shù))數(shù)軸分成兩部分,n個分界點把數(shù)軸分成n+1部分;按各根把實數(shù)分成的n+1部分,由小到大橫向排列,相應(yīng)各因式縱向排列(由對應(yīng)較小根的因式開始依次自上而下排列);計算各區(qū)間內(nèi)各因式的符號,下面是乘積的符號;看下面積的符號寫出不等式的解集.練習(xí):解不等式:x(x-3)(2-x)(x+1)>0. x|-1<x<0或2<x<
5、;3.思考:由函數(shù)、方程、不等式的關(guān)系,能否作出函數(shù)圖像求解 例2圖 練習(xí)圖直接寫出解集:x|-2<x<1或x>3. x|-1<x<0或2<x<3在沒有技術(shù)的情況下:可大致畫出函數(shù)圖星求解,稱之為串根法將不等式化為(x-x1)(x-x2)(x-xn)>0(<0)形式,并將各因式x的系數(shù)化“+”;(為了統(tǒng)一方便)求根,并在數(shù)軸上表示出來;由右上方穿線,經(jīng)過數(shù)軸上表示各根的點(為什么?);若不等式(x的系數(shù)化“+”后)是“>0”,則找“線”在x軸上方的區(qū)間;若不等式是“<0”,則找“線”在x軸下方的區(qū)間.注意:奇穿偶不穿例3 解不等
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 一元 二次 不等式 分式 解法