小學(xué)六年級奧數(shù):工程問題例題(共5頁).doc
《小學(xué)六年級奧數(shù):工程問題例題(共5頁).doc》由會員分享,可在線閱讀,更多相關(guān)《小學(xué)六年級奧數(shù):工程問題例題(共5頁).doc(5頁珍藏版)》請在匯文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上工 程 問 題基本公式:工作總量=工作效率×工作時間工作效率=工作總量÷工作時間工作時間=工作總量÷工作效率基本思路:假設(shè)工作總量為“1”(和總工作量無關(guān));假設(shè)一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公倍數(shù)),利用上述三個基本關(guān)系,可以簡單地表示出工作效率及工作時間.關(guān)鍵問題:確定工作量、工作時間、工作效率間的兩兩對應(yīng)關(guān)系。舉一個簡單例子:一件工作,甲做10天可完成,乙做15天可完成.問兩人合作幾天可以完成?一件工作看成1個整體,因此可以把工作量算作1.所謂工作效率,就是單位時間內(nèi)完成的工作量,我們用的時間單位是“天
2、”,1天就是一個單位,再根據(jù)基本數(shù)量關(guān)系式,得到所需時間=工作量÷工作效率=6(天)兩人合作需要6天.這是工程問題中最基本的問題,這一講介紹的許多例子都是從這一問題發(fā)展產(chǎn)生的.一、兩個人的問題標(biāo)題上說的“兩個人”,也可以是兩個組、兩個隊等等的兩個集體.例1 一件工作,甲做9天可以完成,乙做6天可以完成.現(xiàn)在甲先做了3天,余下的工作由乙繼續(xù)完成.乙需要做幾天可以完成全部工作?答:乙需要做4天可完成全部工作.解二:9與6的最小公倍數(shù)是18.設(shè)全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需時間是(18- 2 × 3)÷ 3= 4(天).例2 一件
3、工作,甲、乙兩人合作30天可以完成,共同做了6天后,甲離開了,由乙繼續(xù)做了40天才完成.如果這件工作由甲或乙單獨完成各需要多少天?解:共做了6天后,原來,甲做 24天,乙做 24天,現(xiàn)在,甲做0天,乙做40=(24+16)天.這說明原來甲24天做的工作,可由乙做16天來代替.因此甲的工作效率如果乙獨做,所需時間是如果甲獨做,所需時間是答:甲或乙獨做所需時間分別是75天和50天.例3 某工程先由甲獨做63天,再由乙單獨做28天即可完成;如果由甲、乙兩人合作,需48天完成.現(xiàn)在甲先單獨做42天,然后再由乙來單獨完成,那么乙還需要做多少天?解:先對比如下:甲做63天,乙做28天;甲做48天,乙做48
4、天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的甲先單獨做42天,比63天少做了63-42=21(天),相當(dāng)于乙要做因此,乙還要做28+28= 56 (天).答:乙還需要做 56天.例4 一件工程,甲隊單獨做10天完成,乙隊單獨做30天完成.現(xiàn)在兩隊合作,其間甲隊休息了2天,乙隊休息了8天(不存在兩隊同一天休息).問開始到完工共用了多少天時間?解一:甲隊單獨做8天,乙隊單獨做2天,共完成工作量余下的工作量是兩隊共同合作的,需要的天數(shù)是2+8+ 1= 11(天).答:從開始到完工共用了11天.二、多人的工程問題我們說的多人,至少有3個人,當(dāng)然多人問題要比2人問
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 小學(xué) 六年級 工程 問題 例題