應(yīng)用多元統(tǒng)計分析第六章習(xí)題解答ppt課件.ppt
《應(yīng)用多元統(tǒng)計分析第六章習(xí)題解答ppt課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《應(yīng)用多元統(tǒng)計分析第六章習(xí)題解答ppt課件.ppt(38頁珍藏版)》請在匯文網(wǎng)上搜索。
1、應(yīng)用多元統(tǒng)計分析,第六章部分習(xí)題解答,2,第六章 聚類分析,6-1 證明下列結(jié)論: (1) 兩個距離的和所組成的函數(shù)仍是距離; (2) 一個正常數(shù)乘上一個距離所組成的函數(shù)仍是距離; (3)設(shè)d為一個距離,c0為常數(shù),則仍是一個距離; (4) 兩個距離的乘積所組成的函數(shù)不一定是距離;,3,第六章 聚類分析,(2) 設(shè)d是距離,a 0為正常數(shù).令d*=ad,顯然有,4,第六章 聚類分析,故d*=ad是一個距離. (3) 設(shè)d為一個距離,c0為常數(shù),顯然有,5,第六章 聚類分析,故d*是一個距離.,6,第六章 聚類分析,7,第六章 聚類分析,6-2 試證明二值變量的相關(guān)系數(shù)為(6.2.2)式,夾角余
2、弦為(6.2.3)式.,證明:設(shè)變量Xi和Xj是二值變量,它們的n次觀測值記為xti, xtj (t=1,n). xti, xtj 的值或為0,或為1.由二值變量的列聯(lián)表(表6.5)可知:變量Xi取值1的觀測次數(shù)為a+b,取值0的觀測次數(shù)為c+d;變量Xi和Xj取值均為1的觀測次數(shù)為a,取值均為0的觀測次數(shù)為d 等等。利用兩定量變量相關(guān)系數(shù)的公式:,8,第六章 聚類分析,9,第六章 聚類分析,故二值變量的相關(guān)系數(shù)為:,(6.2.2),10,第六章 聚類分析,利用兩定量變量夾角余弦的公式:,其中,故有,11,第六章 聚類分析,6-3 下面是5個樣品兩兩間的距離陣,試用最長距離法、類平均法作系統(tǒng)聚
3、類,并畫出譜系聚類圖.解:用最長距離法: 合并X(1),X(4)=CL4,并類距離 D1=1.,12,第六章 聚類分析, 合并X(2),X(5)=CL3,并類距離 D2=3., 合并CL3,CL4=CL2,并類距離 D3=8., 所有樣品合并為一類CL1,并類距離 D4=10.,13,第六章 聚類分析,最長距離法的譜系聚類圖如下:,14,第六章 聚類分析, 合并X(1),X(4)=CL4,并類距離 D1=1.,用類平均法:,15,第六章 聚類分析, 合并X(2),X(5)=CL3,并類距離 D2=3., 合并CL3,CL4=CL2,并類距離 D3=(165/4)1/2., 所有樣品合并為一類C
4、L1,并類距離 D4=(121/2)1/2.,16,第六章 聚類分析,類平均法的譜系聚類圖如下:,17,第六章 聚類分析,6-4 利用距離平方的遞推公式,來證明當(dāng)0,p0,q0,p+q+1時,系統(tǒng)聚類中的類平均法、可變類平均法、可變法、Ward法的單調(diào)性.,證明:設(shè)第L次合并Gp和Gq為新類Gr后,并類距離DL Dpq,且必有Dpq2Dij2 . 新類Gr與其它類Gk的距離平方的遞推公式 ,當(dāng)0,p0,q0, p+q+ 1 時,這表明新的距離矩陣中類間的距離均 Dpq DL ,故有DL1 DL ,即相應(yīng)的聚類法有單調(diào)性.,18,第六章 聚類分析,對于類平均法,因,故類平均法具有單調(diào)性。 對于可
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 應(yīng)用 多元 統(tǒng)計分析 第六 習(xí)題 解答 ppt 課件