《人教版高中數(shù)學知識點總結.doc》由會員分享,可在線閱讀,更多相關《人教版高中數(shù)學知識點總結.doc(43頁珍藏版)》請在匯文網(wǎng)上搜索。
1、高中數(shù)學 必修1知識點第一章集合與函數(shù)概念【1.1.1】集合的含義與表示(1)集合的概念 集合中的元素具有確定性、互異性和無序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實數(shù)集.(3)集合與元素間的關系對象與集合的關系是,或者,兩者必居其一.(4)集合的表示法自然語言法:用文字敘述的形式來描述集合.列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.描述法:|具有的性質(zhì),其中為集合的代表元素.圖示法:用數(shù)軸或韋恩圖來表示集合.(5)集合的分類含有有限個元素的集合叫做有限集.含有無限個元素的集合叫做無限集.不含有任何元素的集合叫做空集().【1.1
2、.2】集合間的基本關系(6)子集、真子集、集合相等名稱記號意義性質(zhì)示意圖子集(或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則或真子集AB(或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA(7)已知集合有個元素,則它有個子集,它有個真子集,它有個非空子集,它有非空真子集.【1.1.3】集合的基本運算(8)交集、并集、補集名稱記號意義性質(zhì)示意圖交集且(1)(2)(3)并集或(1)(2)(3)補集1 2【補充知識】含絕對值的不等式與一元二次不等式的解法(1)含絕對值的不等式的解法不
3、等式解集或把看成一個整體,化成,型不等式來求解(2)一元二次不等式的解法判別式二次函數(shù)的圖象一元二次方程的根(其中無實根的解集或的解集1.2函數(shù)及其表示【1.2.1】函數(shù)的概念(1)函數(shù)的概念設、是兩個非空的數(shù)集,如果按照某種對應法則,對于集合中任何一個數(shù),在集合中都有唯一確定的數(shù)和它對應,那么這樣的對應(包括集合,以及到的對應法則)叫做集合到的一個函數(shù),記作函數(shù)的三要素:定義域、值域和對應法則只有定義域相同,且對應法則也相同的兩個函數(shù)才是同一函數(shù)(2)區(qū)間的概念及表示法設是兩個實數(shù),且,滿足的實數(shù)的集合叫做閉區(qū)間,記做;滿足的實數(shù)的集合叫做開區(qū)間,記做;滿足,或的實數(shù)的集合叫做半開半閉區(qū)間,
4、分別記做,;滿足的實數(shù)的集合分別記做注意:對于集合與區(qū)間,前者可以大于或等于,而后者必須(3)求函數(shù)的定義域時,一般遵循以下原則:是整式時,定義域是全體實數(shù)是分式函數(shù)時,定義域是使分母不為零的一切實數(shù)是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1中,零(負)指數(shù)冪的底數(shù)不能為零若是由有限個基本初等函數(shù)的四則運算而合成的函數(shù)時,則其定義域一般是各基本初等函數(shù)的定義域的交集對于求復合函數(shù)定義域問題,一般步驟是:若已知的定義域為,其復合函數(shù)的定義域應由不等式解出對于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問題具體情況需對
5、字母參數(shù)進行分類討論由實際問題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問題的實際意義(4)求函數(shù)的值域或最值求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的事實上,如果在函數(shù)的值域中存在一個最?。ù螅?shù),這個數(shù)就是函數(shù)的最小(大)值因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同求函數(shù)值域與最值的常用方法:觀察法:對于比較簡單的函數(shù),我們可以通過觀察直接得到值域或最值配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值判別式法:若函數(shù)可以化成一個系數(shù)含有的關于的二次方程,則在時,由于為實數(shù),故必須有,從而確定函數(shù)的值域或最值不等式
6、法:利用基本不等式確定函數(shù)的值域或最值換元法:通過變量代換達到化繁為簡、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉化為三角函數(shù)的最值問題反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關系確定函數(shù)的值域或最值數(shù)形結合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值函數(shù)的單調(diào)性法【1.2.2】函數(shù)的表示法(5)函數(shù)的表示方法表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種 解析法:就是用數(shù)學表達式表示兩個變量之間的對應關系列表法:就是列出表格來表示兩個變量之間的對應關系圖象法:就是用圖象表示兩個變量之間的對應關系(6)映射的概念設、是兩個集合,如果按照某種對應法則,對于集合中任何一個元素
7、,在集合中都有唯一的元素和它對應,那么這樣的對應(包括集合,以及到的對應法則)叫做集合到的映射,記作給定一個集合到集合的映射,且如果元素和元素對應,那么我們把元素叫做元素的象,元素叫做元素的原象1.3函數(shù)的基本性質(zhì)【1.3.1】單調(diào)性與最大(小)值(1)函數(shù)的單調(diào)性定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的單調(diào)性如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x1、x2,當x1 x2時,都有f(x1)f(x2),那么就說f(x)在這個區(qū)間上是增函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個區(qū)間圖 象上升為增)(4)利用復合函數(shù)如果對于屬于定義域I內(nèi)某個區(qū)間上的
8、任意兩個自變量的值x1、x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個區(qū)間圖象下降為減)(4)利用復合函數(shù)在公共定義域內(nèi),兩個增函數(shù)的和是增函數(shù),兩個減函數(shù)的和是減函數(shù),增函數(shù)減去一個減函數(shù)為增函數(shù),減函數(shù)減去一個增函數(shù)為減函數(shù)yxo對于復合函數(shù),令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減(2)打“”函數(shù)的圖象與性質(zhì)分別在、上為增函數(shù),分別在、上為減函數(shù)(3)最大(?。┲刀x一般地,設函數(shù)的定義域為,如果存在實數(shù)滿足:(1)對于任意的,都有; (2)存在,使得那么,我
9、們稱是函數(shù) 的最大值,記作一般地,設函數(shù)的定義域為,如果存在實數(shù)滿足:(1)對于任意的,都有;(2)存在,使得那么,我們稱是函數(shù)的最小值,記作【1.3.2】奇偶性(4)函數(shù)的奇偶性定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對于函數(shù)f(x)定義域內(nèi)任意一個x,都有f(x)=f(x),那么函數(shù)f(x)叫做奇函數(shù)(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于原點對稱)如果對于函數(shù)f(x)定義域內(nèi)任意一個x,都有f(x)=f(x),那么函數(shù)f(x)叫做偶函數(shù)(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于y軸對稱)若函數(shù)為奇函數(shù),且在處
10、有定義,則奇函數(shù)在軸兩側相對稱的區(qū)間增減性相同,偶函數(shù)在軸兩側相對稱的區(qū)間增減性相反在公共定義域內(nèi),兩個偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個偶函數(shù)與一個奇函數(shù)的積(或商)是奇函數(shù)補充知識函數(shù)的圖象(1)作圖利用描點法作圖:確定函數(shù)的定義域; 化解函數(shù)解析式;討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性); 畫出函數(shù)的圖象利用基本函數(shù)圖象的變換作圖:要準確記憶一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等各種基本初等函數(shù)的圖象平移變換伸縮變換對稱變換(2)識圖對于給定函數(shù)的圖象,要能從圖象的左右、上下分別范圍、變化趨勢、
11、對稱性等方面研究函數(shù)的定義域、值域、單調(diào)性、奇偶性,注意圖象與函數(shù)解析式中參數(shù)的關系(3)用圖 函數(shù)圖象形象地顯示了函數(shù)的性質(zhì),為研究數(shù)量關系問題提供了“形”的直觀性,它是探求解題途徑,獲得問題結果的重要工具要重視數(shù)形結合解題的思想方法第二章 基本初等函數(shù)()2.1指數(shù)函數(shù)【2.1.1】指數(shù)與指數(shù)冪的運算(1)根式的概念如果,且,那么叫做的次方根當是奇數(shù)時,的次方根用符號表示;當是偶數(shù)時,正數(shù)的正的次方根用符號表示,負的次方根用符號表示;0的次方根是0;負數(shù)沒有次方根式子叫做根式,這里叫做根指數(shù),叫做被開方數(shù)當為奇數(shù)時,為任意實數(shù);當為偶數(shù)時,根式的性質(zhì):;當為奇數(shù)時,;當為偶數(shù)時, (2)分
12、數(shù)指數(shù)冪的概念正數(shù)的正分數(shù)指數(shù)冪的意義是:且0的正分數(shù)指數(shù)冪等于0正數(shù)的負分數(shù)指數(shù)冪的意義是:且0的負分數(shù)指數(shù)冪沒有意義 注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù)(3)分數(shù)指數(shù)冪的運算性質(zhì)【2.1.2】指數(shù)函數(shù)及其性質(zhì)(4)指數(shù)函數(shù)函數(shù)名稱指數(shù)函數(shù)定義0101函數(shù)且叫做指數(shù)函數(shù)圖象定義域值域過定點圖象過定點,即當時,奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對圖象的影響在第一象限內(nèi),越大圖象越高;在第二象限內(nèi),越大圖象越低2.2對數(shù)函數(shù)【2.2.1】對數(shù)與對數(shù)運算(1) 對數(shù)的定義若,則叫做以為底的對數(shù),記作,其中叫做底數(shù),叫做真數(shù)負數(shù)和零沒有對數(shù)對數(shù)式與指數(shù)式的互化:(2)幾
13、個重要的對數(shù)恒等式,(3)常用對數(shù)與自然對數(shù)常用對數(shù):,即;自然對數(shù):,即(其中)(4)對數(shù)的運算性質(zhì) 如果,那么加法:減法:數(shù)乘:換底公式:【2.2.2】對數(shù)函數(shù)及其性質(zhì)(5)對數(shù)函數(shù)函數(shù)名稱對數(shù)函數(shù)定義函數(shù)且叫做對數(shù)函數(shù)圖象0101定義域值域過定點圖象過定點,即當時,奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高(6)反函數(shù)的概念設函數(shù)的定義域為,值域為,從式子中解出,得式子如果對于在中的任何一個值,通過式子,在中都有唯一確定的值和它對應,那么式子表示是的函數(shù),函數(shù)叫做函數(shù)的反函數(shù),記作,習慣上改寫成(7)反函數(shù)的求法確定反函數(shù)的定義域,即原函數(shù)的值域;從原函數(shù)式中反解出;將改寫成,并注明反函數(shù)的定義域(8)反函數(shù)的性質(zhì)原函數(shù)與反函數(shù)的圖象關于直線對稱函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域若在原函數(shù)的圖象上,則在反函數(shù)的圖象上一般地,函數(shù)要有