事業(yè)單位行測備考---排列組合中的三種方法(共3頁).doc
《事業(yè)單位行測備考---排列組合中的三種方法(共3頁).doc》由會員分享,可在線閱讀,更多相關(guān)《事業(yè)單位行測備考---排列組合中的三種方法(共3頁).doc(3頁珍藏版)》請在匯文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上事業(yè)單位行測備考:排列組合中的三種方法推薦閱讀: |一、捆綁法所謂捆綁法,指在解決對于某幾個元素要求相鄰的問題時,先整體考慮,將相鄰元素視作一個整體參與排序,然后再單獨考慮這個整體內(nèi)部各元素間順序。提醒:其首要特點是相鄰,其次捆綁法一般都應(yīng)用在不同物體的排序問題中。【例題】有10本不同的書:其中數(shù)學(xué)書4本,外語書3本,語文書3本。若將這些書排成一列放在書架上,讓數(shù)學(xué)書排在一起,外語書也恰好排在一起的排法共有( )種。解題思路:這是一個排序問題,書本之間是不同的,其中要求數(shù)學(xué)書和外語書都各自在一起。為快速解決這個問題,先將4本數(shù)學(xué)書看做一個元素,將3本外語書看做一個元素
2、,然后和剩下的3本語文書共5個元素進行統(tǒng)一排序,方法數(shù)為,然后排在一起的4本數(shù)學(xué)書之間順序不同也對應(yīng)最后整個排序不同,所以在4本書內(nèi)部也需要排序,方法數(shù)為,同理,外語書排序方法數(shù)為。而三者之間是分步過程,故而用乘法原理得?!纠}】5個人站成一排,要求甲乙兩人站在一起,有多少種方法?解題思路:先將甲乙兩人看成1個人,與剩下的3個人一起排列,方法數(shù)為,然后甲乙兩個人也有順序要求,方法數(shù)為,因此站隊方法數(shù)為?!纠}】6個不同的球放到5個不同的盒子中,要求每個盒子至少放一個球,一共有多少種方法?解題思路:按照題意,顯然是2個球放到其中一個盒子,另外4個球分別放到4個盒子中,因此方法是先從6個球中挑出2
3、個球作為一個整體放到一個盒子中,然后這個整體和剩下的4個球分別排列放到5個盒子中,故方法數(shù)是。二、插空法所謂插空法,指在解決對于某幾個元素要求不相鄰的問題時,先將其它元素排好,再將指定的不相鄰的元素插入已排好元素的間隙或兩端位置。提醒:首要特點是不鄰,其次是插空法一般應(yīng)用在排序問題中?!纠}】若有A、B、C、D、E五個人排隊,要求A和B兩個人必須不站在一起,則有多少排隊方法?解題思路:題中要求AB兩人不站在一起,所以可以先將除A和B之外的3個人排成一排,方法數(shù)為,然后再將A和B分別插入到其余3個人排隊所形成的4個空中,也就是從4個空中挑出兩個并排上兩個人,其方法數(shù)為,因此總方法數(shù)?!纠}】8個
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 事業(yè)單位 備考 排列組合 中的 方法