函數(shù)的概念教學(xué)設(shè)計(第一課時)(共8頁).doc
《函數(shù)的概念教學(xué)設(shè)計(第一課時)(共8頁).doc》由會員分享,可在線閱讀,更多相關(guān)《函數(shù)的概念教學(xué)設(shè)計(第一課時)(共8頁).doc(8頁珍藏版)》請在匯文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上函數(shù)的概念教學(xué)設(shè)計(第一課時)知識目標(biāo) 通過豐富的實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型;用集合與對應(yīng)的思想理解函數(shù)的概念;理解函數(shù)的三要素及函數(shù)符號的深刻含義;會求一些簡單函數(shù)的定義域及值域。能力目標(biāo) 培養(yǎng)學(xué)生觀察、類比、推理的能力;培養(yǎng)學(xué)生分析、判斷、抽象、歸納概括的邏輯思維能力;培養(yǎng)學(xué)生聯(lián)系、對應(yīng)、轉(zhuǎn)化的辯證思想;強化“形”與“數(shù)”結(jié)合并相互轉(zhuǎn)化的數(shù)學(xué)思想。情感目標(biāo) 滲透數(shù)學(xué)思想和文化,激發(fā)學(xué)生觀察、分析、探求的興趣和熱情;強化學(xué)生參與意識,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,獲得積極的情感體驗;體會在探究過程中由特殊到一般、從具體到抽象、運動變化、相互
2、聯(lián)系、相互制約、相互轉(zhuǎn)化的辯證唯物主義觀點;感受數(shù)學(xué)的簡潔美、對稱美、數(shù)與形的和諧統(tǒng)一美;樹立“數(shù)學(xué)源于實踐,又服務(wù)于實踐”的數(shù)學(xué)應(yīng)用意識。 教學(xué)重點:函數(shù)的概念,函數(shù)的三要素. 教學(xué)難點:函數(shù)概念及符號y=f(x)的理解. 教學(xué)方法:誘思教學(xué)法 教學(xué)用具:多媒體 教學(xué)過程:【教學(xué)過程】設(shè)計環(huán)節(jié)設(shè)計意圖師生活動一、創(chuàng)設(shè)問題情境,引出課題。以實際問題為背景,以學(xué)生熟悉的情境入手激活學(xué)生的原有知識,形成學(xué)生的“再創(chuàng)造”欲望,讓學(xué)生在熟悉的環(huán)境中發(fā)現(xiàn)新知識,使新知識和原知識形成聯(lián)系,同時也體現(xiàn)了數(shù)學(xué)的應(yīng)用價值。通過問題2這兩個用已有概念不太容易回答的問題,引發(fā)學(xué)生的認(rèn)知沖突,有著承上啟下的作用。既是
3、對初中已學(xué)的函數(shù)概念的進一步深入,又是為下一步用集合語言來刻畫函數(shù)的本質(zhì)做好伏筆。教師提出問題1:我們在初中學(xué)習(xí)過函數(shù)的概念,它是如何定義的呢?在初中已經(jīng)學(xué)過哪些函數(shù)?(在學(xué)生回答的基礎(chǔ)上出示投影)我們已經(jīng)學(xué)習(xí)了一些具體的函數(shù),那么為什么還要學(xué)習(xí)函數(shù)呢?先請同學(xué)們思考下面的兩個問題:問題2:由上述定義你能判斷“y=1”是否表示一個函數(shù)?函數(shù)y=x與函數(shù)表示同一個函數(shù)嗎?學(xué)生思考、討論后,教師點撥:僅用上述函數(shù)概念很難回答這些問題,我們需要從新的角度來認(rèn)識函數(shù)概念。這就是今天我們要學(xué)習(xí)的課題:函數(shù)的概念(板書)二、借助信息技術(shù),討論歸納。以實際問題為載體,以信息技術(shù)的作圖功能為輔助。在三個實例的
4、教學(xué)中,重點在于引導(dǎo)學(xué)生體會函數(shù)概念中的對應(yīng)關(guān)系。通過實例1,體會用解析式刻畫變量之間的對應(yīng)關(guān)系,關(guān)注t和h的范圍;通過實例2體會用圖象刻畫變量之間的對應(yīng)關(guān)系,關(guān)注t和S的范圍;通過實例3體會用表格刻畫變量之間的對應(yīng)關(guān)系。為了更好地使學(xué)生嘗試用集合與對應(yīng)的語言進行描述,可以利用信息技術(shù)設(shè)置教學(xué)情境。通過學(xué)生的觀察、思考、討論來歸納結(jié)論,體現(xiàn)了學(xué)生自主探究的學(xué)習(xí)方式。讓他們通過實踐來進一步體驗到在集合對應(yīng)觀下的函數(shù)內(nèi)涵,也為學(xué)生應(yīng)用信息技術(shù)解決數(shù)學(xué)問題提供了一種新的途徑和方法。師:(實例1)演示動畫,用幾何畫板動態(tài)地顯示炮彈高度h關(guān)于炮彈發(fā)射時間t的函數(shù)。啟發(fā)學(xué)生觀察、思考、討論,嘗試用集合與對
5、應(yīng)的語言描述變量之間的依賴關(guān)系:在t的變化范圍內(nèi),任給一個t,按照給定的解析式,都有唯一的一個高度h與之相對應(yīng)。生:用計算器計算,然后用集合與對應(yīng)的語言描述變量之間的依賴關(guān)系。師:(實例2)引導(dǎo)學(xué)生看圖,并啟發(fā):在t的變化范圍內(nèi),任給一個t,按照給定的圖象,都有唯一的一個臭氧空洞面積S與之相對應(yīng)。生:動手測量,然后用集合與對應(yīng)的語言描述變量之間的依賴關(guān)系。師生:(實例3)共同讀表,然后用集合與對應(yīng)的語言描述變量之間的依賴關(guān)系。問題3:分析、歸納以上三個實例,它們有什么共同特點?生:分組討論三個實例的共同特點,然后歸納出函數(shù)定義,并在全班交流。師生:由學(xué)生概括,教師補充,引導(dǎo)學(xué)生歸納出三個實例中
6、變量之間的關(guān)系均可描述為:對于數(shù)集A中的每一個x,按照某種對應(yīng)關(guān)系f,在數(shù)集B中都有唯一確定的y與它對應(yīng),記作f:AB三、從特殊到一般,引出函數(shù)概念。從特殊到一般,揭示數(shù)學(xué)通常的發(fā)現(xiàn)過程,給學(xué)生“數(shù)學(xué)創(chuàng)造”的體驗。這種引出概念的方式自然而又易于學(xué)生接受和形成概念。注重雙語,規(guī)范數(shù)學(xué)概念的理解。在涉及的每一個數(shù)學(xué)概念其后注明英語,有利于教師實施雙語教學(xué),也有利于教師和學(xué)生閱讀外文數(shù)學(xué)材料,這也是體現(xiàn)新課標(biāo)實驗教材的創(chuàng)新之處。函數(shù)y=f(x)是學(xué)生學(xué)習(xí)的難點,這是一個抽象的數(shù)學(xué)符號。教學(xué)時首先要強調(diào)符號“y=f(x)”為“y是x的函數(shù)”這句話的數(shù)學(xué)表示,它僅僅是數(shù)學(xué)符號,而不是表示“y等于f與x的
7、乘積”。在有些問題中,對應(yīng)關(guān)系f可用一個解析式表示,但在不少問題中,對應(yīng)關(guān)系f不便用或不可能用解析式表示,而用其他方式(如圖象、列表)來表示。所以教師應(yīng)向?qū)W生明確指出,y=f(x)不一定就是解析式,函數(shù)的表示方式除了解析式外,還有其它表示方法,如實例2的圖象法,實例3的列表法。問題4:函數(shù)能否看做是兩個集合之間的一種對應(yīng)呢?如果能,怎樣給函數(shù)重新下一個定義呢?(在學(xué)生回答的基礎(chǔ)上教師歸納總結(jié))設(shè)A、B是非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在數(shù)集B中都有唯一確定的f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個函數(shù)(function).記作y=f(x
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 函數(shù) 概念 教學(xué) 設(shè)計 第一 課時