專升本高等數(shù)學(xué)知識(shí)點(diǎn)匯總 .doc
《專升本高等數(shù)學(xué)知識(shí)點(diǎn)匯總 .doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《專升本高等數(shù)學(xué)知識(shí)點(diǎn)匯總 .doc(15頁(yè)珍藏版)》請(qǐng)?jiān)趨R文網(wǎng)上搜索。
1、專升本高等數(shù)學(xué)知識(shí)點(diǎn)匯總常用知識(shí)點(diǎn):一、常見函數(shù)的定義域總結(jié)如下:(1)一般形式的定義域:xR(2) 分式形式的定義域:x0(3) 根式的形式定義域:x0(4) 對(duì)數(shù)形式的定義域:x0二、函數(shù)的性質(zhì)1、函數(shù)的單調(diào)性當(dāng)時(shí),恒有,在所在的區(qū)間上是增加的。當(dāng)時(shí),恒有,在所在的區(qū)間上是減少的。2、 函數(shù)的奇偶性定義:設(shè)函數(shù)的定義區(qū)間關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(即若,則有)(1) 偶函數(shù),恒有。(2) 奇函數(shù),恒有。三、基本初等函數(shù)1、常數(shù)函數(shù):,定義域是,圖形是一條平行于軸的直線。2、冪函數(shù):, (是常數(shù))。它的定義域隨著的不同而不同。圖形過原點(diǎn)。3、指數(shù)函數(shù)定義: , (是常數(shù)且,).圖形過(0,1)點(diǎn)。4、
2、對(duì)數(shù)函數(shù)定義: , (是常數(shù)且,)。圖形過(1,0)點(diǎn)。5、三角函數(shù)(1) 正弦函數(shù): , , 。(2) 余弦函數(shù): ., , 。(3) 正切函數(shù): ., , .(4) 余切函數(shù): ., , .5、反三角函數(shù)(1) 反正弦函數(shù): ,。(2) 反余弦函數(shù): ,。 (3) 反正切函數(shù): ,。(4) 反余切函數(shù): ,。極限一、求極限的方法1、代入法 代入法主要是利用了“初等函數(shù)在某點(diǎn)的極限,等于該點(diǎn)的函數(shù)值。”因此遇到大部分簡(jiǎn)單題目的時(shí)候,可以直接代入進(jìn)行極限的求解。2、傳統(tǒng)求極限的方法(1)利用極限的四則運(yùn)算法則求極限。(2)利用等價(jià)無窮小量代換求極限。(3)利用兩個(gè)重要極限求極限。(4)利用羅比
3、達(dá)法則就極限。二、函數(shù)極限的四則運(yùn)算法則設(shè), ,則(1)(2). 推論(a), (為常數(shù))。(b)(3), ().(4)設(shè)為多項(xiàng)式, 則(5)設(shè)均為多項(xiàng)式, 且, 則 三、等價(jià)無窮小常用的等價(jià)無窮小量代換有:當(dāng)時(shí),。對(duì)這些等價(jià)無窮小量的代換,應(yīng)該更深一層地理解為:當(dāng)時(shí),其余類似。四、兩個(gè)重要極限重要極限I 。它可以用下面更直觀的結(jié)構(gòu)式表示:重要極限II 。其結(jié)構(gòu)可以表示為:八、洛必達(dá)(LHospital)法則“”型和“”型不定式,存在有(或)。一元函數(shù)微分學(xué)一、導(dǎo)數(shù)的定義設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)有定義,當(dāng)自變量在處取得增量(點(diǎn)仍在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量。如果當(dāng)時(shí),函數(shù)的增量與自變量的增
4、量之比的極限= 注意兩個(gè)符號(hào)和在題目中可能換成其他的符號(hào)表示。二、求導(dǎo)公式1、基本初等函數(shù)的導(dǎo)數(shù)公式(1) (為常數(shù)) (2)(為任意常數(shù))(3) 特殊情況 (4), (5) (6)(7) (8)(9) (10)(11) (12)2、導(dǎo)數(shù)的四則運(yùn)算公式(1) (2)(3)(為常數(shù)) (4)3、復(fù)合函數(shù)求導(dǎo)公式:設(shè), ,且及都可導(dǎo),則復(fù)合函數(shù)的導(dǎo)數(shù)為。三、導(dǎo)數(shù)的應(yīng)用1、函數(shù)的單調(diào)性則在內(nèi)嚴(yán)格單調(diào)增加。則在內(nèi)嚴(yán)格單調(diào)減少。2、函數(shù)的極值的點(diǎn)函數(shù)的駐點(diǎn)。設(shè)為(1)若時(shí),;時(shí),則為的極大值點(diǎn)。(2)若時(shí),;時(shí),則為的極小值點(diǎn)。(3)如果在的兩側(cè)的符號(hào)相同,那么不是極值點(diǎn)。3、曲線的凹凸性,則曲線在內(nèi)是
5、凹的。,則曲線在內(nèi)是凸的。4、曲線的拐點(diǎn)(1)當(dāng)在的左、右兩側(cè)異號(hào)時(shí),點(diǎn)為曲線的拐點(diǎn),此時(shí).(2)當(dāng)在的左、右兩側(cè)同號(hào)時(shí),點(diǎn)不為曲線的拐點(diǎn)。5、函數(shù)的最大值與最小值極值和端點(diǎn)的函數(shù)值中最大和最小的就是最大值和最小值。四、微分公式,求微分就是求導(dǎo)數(shù)。一元函數(shù)積分學(xué)一、不定積分1、定義,不定積分是求導(dǎo)的逆運(yùn)算,最后的結(jié)果是函數(shù)+C的表達(dá)形式。公式可以用求導(dǎo)公式來記憶。2、不定積分的性質(zhì)(1)或(2)或(3)。(4)(為常數(shù)且)。2、基本積分公式(要求熟練記憶)(1) (2).(3). (4) (5) (6)(7) (8).(9). (10).(11).3、第一類換元積分法對(duì)不定微分,將被積表達(dá)式湊
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
10 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 專升本高等數(shù)學(xué)知識(shí)點(diǎn)匯總 高等數(shù)學(xué) 知識(shí)點(diǎn) 匯總