2016版高考數(shù)學(xué)大二輪總復(fù)習(xí)-增分策略-專題五-立體幾何與空間向量-第3講-立體幾何中的向量方法試題(共26頁).doc
《2016版高考數(shù)學(xué)大二輪總復(fù)習(xí)-增分策略-專題五-立體幾何與空間向量-第3講-立體幾何中的向量方法試題(共26頁).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2016版高考數(shù)學(xué)大二輪總復(fù)習(xí)-增分策略-專題五-立體幾何與空間向量-第3講-立體幾何中的向量方法試題(共26頁).doc(26頁珍藏版)》請(qǐng)?jiān)趨R文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上第3講立體幾何中的向量方法1(2014·課標(biāo)全國)直三棱柱ABCA1B1C1中,BCA90°,M,N分別是A1B1,A1C1的中點(diǎn),BCCACC1,則BM與AN所成角的余弦值為()A. B. C. D.2(2015·安徽)如圖所示,在多面體A1B1D1DCBA中,四邊形AA1B1B,ADD1A1,ABCD均為正方形,E為B1D1的中點(diǎn),過A1,D,E的平面交CD1于F.(1)證明:EFB1C;(2)求二面角EA1DB1的余弦值以空間幾何體為載體考查空間角是高考命題的重點(diǎn),與空間線面關(guān)系的證明相結(jié)合,熱點(diǎn)為二面角的求
2、解,均以解答的形式進(jìn)行考查,難度主要體現(xiàn)在建立空間直角坐標(biāo)系和準(zhǔn)確計(jì)算上.熱點(diǎn)一利用向量證明平行與垂直設(shè)直線l的方向向量為a(a1,b1,c1),平面、的法向量分別為(a2,b2,c2),v(a3,b3,c3)則有:(1)線面平行l(wèi)aa·0a1a2b1b2c1c20.(2)線面垂直laaka1ka2,b1kb2,c1kc2.(3)面面平行vva2a3,b2b3,c2c3.(4)面面垂直v·v0a2a3b2b3c2c30.例1如圖,在直三棱柱ADEBCF中,面ABFE和面ABCD都是正方形且互相垂直,M為AB的中點(diǎn),O為DF的中點(diǎn)運(yùn)用向量方法證明:(1)OM平面BCF;(2)
3、平面MDF平面EFCD.思維升華用向量知識(shí)證明立體幾何問題,仍然離不開立體幾何中的定理如要證明線面平行,只需要證明平面外的一條直線和平面內(nèi)的一條直線平行,即化歸為證明線線平行,用向量方法證明直線ab,只需證明向量ab(R)即可若用直線的方向向量與平面的法向量垂直來證明線面平行,仍需強(qiáng)調(diào)直線在平面外跟蹤演練1如圖所示,已知直三棱柱ABCA1B1C1中,ABC為等腰直角三角形,BAC90°,且ABAA1,D、E、F分別為B1A、C1C、BC的中點(diǎn)求證:(1)DE平面ABC;(2)B1F平面AEF.熱點(diǎn)二利用空間向量求空間角設(shè)直線l,m的方向向量分別為a(a1,b1,c1),b(a2,b2
4、,c2)平面,的法向量分別為(a3,b3,c3),v(a4,b4,c4)(以下相同)(1)線線夾角設(shè)l,m的夾角為(0),則cos .(2)線面夾角設(shè)直線l與平面的夾角為(0),則sin |cosa,|.(3)面面夾角設(shè)平面、的夾角為(0<),則|cos |cos,v|.例2(2015·江蘇)如圖,在四棱錐PABCD中,已知PA平面ABCD,且四邊形ABCD為直角梯形,ABCBAD,PAAD2,ABBC1.(1)求平面PAB與平面PCD所成二面角的余弦值;(2)點(diǎn)Q是線段BP上的動(dòng)點(diǎn),當(dāng)直線CQ與DP所成的角最小時(shí),求線段BQ的長思維升華(1)運(yùn)用空間向量坐標(biāo)運(yùn)算求空間角的一般
5、步驟:建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;求出相關(guān)點(diǎn)的坐標(biāo);寫出向量坐標(biāo);結(jié)合公式進(jìn)行論證、計(jì)算;轉(zhuǎn)化為幾何結(jié)論(2)求空間角注意:兩條異面直線所成的角不一定是直線的方向向量的夾角,即cos |cos |.兩平面的法向量的夾角不一定是所求的二面角,有可能為兩法向量夾角的補(bǔ)角直線和平面所成的角的正弦值等于平面法向量與直線方向向量夾角的余弦值的絕對(duì)值,即注意函數(shù)名稱的變化跟蹤演練2(2014·福建)在平面四邊形ABCD中,ABBDCD1,ABBD,CDBD.將ABD沿BD折起,使得平面ABD平面BCD,如圖所示(1)求證:ABCD;(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值熱點(diǎn)三利
6、用空間向量求解探索性問題存在探索性問題的基本特征是要判斷在某些確定條件下的某一數(shù)學(xué)對(duì)象(數(shù)值、圖形、函數(shù)等)是否存在或某一結(jié)論是否成立解決這類問題的基本策略是先假設(shè)題中的數(shù)學(xué)對(duì)象存在(或結(jié)論成立)或暫且認(rèn)可其中的一部分結(jié)論,然后在這個(gè)前提下進(jìn)行邏輯推理,若由此導(dǎo)出矛盾,則否定假設(shè);否則,給出肯定結(jié)論例3如圖,在直三棱柱ABCA1B1C1中,ABBC2AA1,ABC90°,D是BC的中點(diǎn)(1)求證:A1B平面ADC1;(2)求二面角C1ADC的余弦值;(3)試問線段A1B1上是否存在點(diǎn)E,使AE與DC1成60°角?若存在,確定E點(diǎn)位置;若不存在,說明理由思維升華空間向量最適合
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2016 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 策略 專題 立體幾何 空間 向量 中的 方法 試題 26
鏈接地址:http://zhizhaikeji.com/p-6334079.html