高中數(shù)學知識點梳理(.doc
《高中數(shù)學知識點梳理(.doc》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學知識點梳理(.doc(47頁珍藏版)》請在匯文網(wǎng)上搜索。
1、【知識點梳理】一、集 合1集合:某些指定的對象集在一起成為集合。(1)集合中的對象稱元素,若a是集合A的元素,記作;若b不是集合A的元素,記作;(2)集合中的元素必須滿足:確定性、互異性與無序性;確定性:設(shè)A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立;互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應(yīng)重復出現(xiàn)同一元素;無序性:集合中不同的元素之間沒有地位差異,集合不同于元素的排列順序無關(guān);(3)表示一個集合可用列舉法、描述法或圖示法;列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi);描述法:把
2、集合中的元素的公共屬性描述出來,寫在大括號內(nèi)。具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。注意:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。(4)常用數(shù)集及其記法:非負整數(shù)集(或自然數(shù)集),記作N;正整數(shù)集,記作N*或N+;整數(shù)集,記作Z;有理數(shù)集,記作Q;實數(shù)集,記作R。2集合的包含關(guān)系:(1)集合A的任何一個元素都是集合B的元素,則稱A是B的子集(或B包含A),記作AB(或);集合相等:構(gòu)成兩個集合的元素完全一樣。若AB且BA,
3、則稱A等于B,記作A=B;若AB且AB,則稱A是B的真子集,記作A B;(2)簡單性質(zhì):1)AA;2)A;3)若AB,BC,則AC;4)若集合A是n個元素的集合,則集合A有2n個子集(其中2n1個真子集);3全集與補集:(1)包含了我們所要研究的各個集合的全部元素的集合稱為全集,記作U;(2)若S是一個集合,AS,則,=稱S中子集A的補集;(3)簡單性質(zhì):1)()=A;2)S=,=S。4交集與并集:(1)一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集。交集。(2)一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集。注意:求集合的并、交、補是集
4、合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法。5集合的簡單性質(zhì):(1)(2)(3)(4);(5)(AB)=(A)(B),(AB)=(A)(B)。二、函數(shù)概念與表示1函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個函數(shù)。記作:y=f(x),xA。其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值
5、相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域。注意:(1)“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;(2)函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x。2構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域(1)解決一切函數(shù)問題必須認真確定該函數(shù)的定義域,函數(shù)的定義域包含三種形式:自然型:指函數(shù)的解析式有意義的自變量x的取值范圍(如:分式函數(shù)的分母不為零,偶次根式函數(shù)的被開方數(shù)為非負數(shù),對數(shù)函數(shù)的真數(shù)為正數(shù),等等);限制型:指命題的條件或人為對自變量x的限制,這是函數(shù)學習中重點,往往也是難點,因為有時這種限制比較隱蔽,容
6、易犯錯誤;實際型:解決函數(shù)的綜合問題與應(yīng)用問題時,應(yīng)認真考察自變量x的實際意義。(2)求函數(shù)的值域是比較困難的數(shù)學問題,中學數(shù)學要求能用初等方法求一些簡單函數(shù)的值域問題。配方法(將函數(shù)轉(zhuǎn)化為二次函數(shù));判別式法(將函數(shù)轉(zhuǎn)化為二次方程);不等式法(運用不等式的各種性質(zhì));函數(shù)法(運用基本函數(shù)性質(zhì),或抓住函數(shù)的單調(diào)性、函數(shù)圖象等)。3兩個函數(shù)的相等:函數(shù)的定義含有三個要素,即定義域A、值域C和對應(yīng)法則f。當函數(shù)的定義域及從定義域到值域的對應(yīng)法則確定之后,函數(shù)的值域也就隨之確定。因此,定義域和對應(yīng)法則為函數(shù)的兩個基本條件,當且僅當兩個函數(shù)的定義域和對應(yīng)法則都分別相同時,這兩個函數(shù)才是同一個函數(shù)。4區(qū)
7、間(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示。5映射的概念一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f:AB”。函數(shù)是建立在兩個非空數(shù)集間的一種對應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應(yīng)關(guān)系,這種的對應(yīng)就叫映射。注意:(1)這兩個集合有先后順序,A到B的射與B到A的映射是截然不同的其中f表示具體的對應(yīng)法則,可以用漢字敘述。(2)“都有唯一”什
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
15 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學 知識點 梳理