(完整版)中考數(shù)學(xué)復(fù)習(xí)圓專(zhuān)題復(fù)習(xí)教案.doc
《(完整版)中考數(shù)學(xué)復(fù)習(xí)圓專(zhuān)題復(fù)習(xí)教案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(完整版)中考數(shù)學(xué)復(fù)習(xí)圓專(zhuān)題復(fù)習(xí)教案.doc(21頁(yè)珍藏版)》請(qǐng)?jiān)趨R文網(wǎng)上搜索。
1、中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)六 幾何(圓)【教學(xué)筆記】一、 與圓有關(guān)的計(jì)算問(wèn)題(重點(diǎn))1、 扇形面積的計(jì)算扇形:扇形面積公式 :圓心角 :扇形對(duì)應(yīng)的圓的半徑 :扇形弧長(zhǎng) :扇形面積圓錐側(cè)面展開(kāi)圖:(1)=(2)圓錐的體積:2、 弧長(zhǎng)的計(jì)算:弧長(zhǎng)公式 ; 3、 角度的計(jì)算二、 圓的基本性質(zhì)(重點(diǎn))1、 切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑2、 圓周角定理:一條弧所對(duì)圓周角等于它所對(duì)圓心角的一半;推論:(1)在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等; (2)相等的圓周角所對(duì)的弧也相等。 (3)半圓(直徑)所對(duì)的圓周角是直角。 (4)90的圓周角所對(duì)的弦是直徑。注意:在圓中,同一條弦所對(duì)的圓周角有無(wú)數(shù)個(gè)。
2、3、 垂徑定理定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對(duì)的兩段弧 推論:(1)平分弦(不是直徑)的直徑垂直與這條弦,并且平分這條弦所對(duì)的兩段弧 (2)弦的垂直平分線經(jīng)過(guò)圓心,并且平分這條弦所對(duì)的弧 (3)平分弦所對(duì)的一條弧的直徑垂直平分這條弦,并且平分這條弦所對(duì)的另一條弧 (4)在同圓或者等圓中,兩條平行弦所夾的弧相等三、 圓與函數(shù)圖象的綜合一、 與圓有關(guān)的計(jì)算問(wèn)題【例1】(2016資陽(yáng))在RtABC中,ACB=90,AC=2,以點(diǎn)B為圓心,BC的長(zhǎng)為半徑作弧,交AB于點(diǎn)D,若點(diǎn)D為AB的中點(diǎn),則陰影部分的面積是()A2 B4 C2 D【解答】解:D為AB的中點(diǎn),BC=BD=AB,A=
3、30,B=60AC=2,BC=ACtan30=2=2,S陰影=SABCS扇形CBD=22=2故選A【例2】(2014資陽(yáng))如圖,扇形AOB中,半徑OA=2,AOB=120,C是的中點(diǎn),連接AC、BC,則圖中陰影部分面積是()A2 B2 C D解答:連接OC,AOB=120,C為弧AB中點(diǎn),AOC=BOC=60,OA=OC=OB=2,AOC、BOC是等邊三角形,AC=BC=OA=2,AOC的邊AC上的高是=,BOC邊BC上的高為,陰影部分的面積是2+2=2,故選A【例3】(2013資陽(yáng))鐘面上的分針的長(zhǎng)為1,從9點(diǎn)到9點(diǎn)30分,分針在鐘面上掃過(guò)的面積是()ABCD解答:從9點(diǎn)到9點(diǎn)30分分針掃過(guò)
4、的扇形的圓心角是180,則分針在鐘面上掃過(guò)的面積是:=故選:A【例4】(2015成都)如圖,正六邊形ABCDEF內(nèi)接于O,半徑為4,則這個(gè)正六邊形的邊心距OM和BC弧線的長(zhǎng)分別為( )A2, B,p C, D,【課后練習(xí)】1、 (2015南充)如圖,PA和PB是O的切線,點(diǎn)A和B的切點(diǎn),AC是O的直徑,已知P=40,則ACB的大小是(B)A40 B60 C70 D802、 (2015達(dá)州)如圖,直徑AB為12的半圓,繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60,此時(shí)點(diǎn)B旋轉(zhuǎn)到點(diǎn)B,則圖中陰影部分的面積是(B)A12 B24 C6 D36 3、 (2015內(nèi)江)如圖,在O的內(nèi)接四邊形ABCD中,AB是直徑,BCD=12
5、0,過(guò)D點(diǎn)的切線PD與直線AB交于點(diǎn)P,則ADP的度數(shù)為()A40 B35 C30 D45解析:連接BD,DAB=180-C=50,AB是直徑,ADB=90,ABD=90-DAB=40,PD是切線,ADP=B=40故選A4、 (2015自貢)如圖,AB是O的直徑,弦CDAB,CDB30,CD,則陰影部分的面積為A2 B C D解析:BOD60 5、 (2015涼山州)如圖,ABC內(nèi)接于O,OBC=40,則A的度數(shù)為()A80 B100 C110 D1306、 (2015涼山州)將圓心角為90,面積為4cm2的扇形圍成一個(gè)圓錐的側(cè)面,則所圍成的圓錐的底面半徑 ( )A1cm B2cm C3cm
6、D4cm7、 (2015瀘州)如圖,PA、PB分別與O相切于A、B兩點(diǎn),若C=65,則P的度數(shù)為()A65 B130 C50 D1008、 (2015眉山)如圖,O是ABC的外接圓,ACO=450,則B的度數(shù)為( )A300 B350 C400 D 450 9、 (2015巴中)如圖,在O中,弦AC半徑OB,BOC=50,則OAB的度數(shù)為()A25 B50 C60 D3010、 (2015攀枝花)如圖,已知O的一條直徑AB與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1,則圖中陰影部分的面積為()A B C D11、 (2015甘孜州)如圖,已知扇形AOB的半徑為2,圓心角為90,連接AB,則
7、圖中陰影部分的面積是 ( )A2 B4 C42 D4412、 (2015達(dá)州)已知正六邊形ABCDEF的邊心距為cm,則正六邊形的半徑為 cm13、 (2015自貢)如圖,已知AB是O的一條直徑,延長(zhǎng)AB至C點(diǎn),使AC=3BC,CD與O相切于D點(diǎn)若CD,則劣弧AD的長(zhǎng)為 14、 (2015遂寧)在半徑為5cm的O中,45的圓心角所對(duì)的弧長(zhǎng)為 cm15、 (2015宜賓)如圖,AB為O的直徑,延長(zhǎng)AB至點(diǎn)D,使BD=OB,DC切O于點(diǎn)C,點(diǎn)B是的中點(diǎn),弦CF交AB于點(diǎn)E若O的半徑為2,則CF= 16、 (2015瀘州)用一個(gè)圓心角為120,半徑為6的扇形作一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面圓的半徑是
8、 17、 (2015眉山)已知O的內(nèi)接正六邊形周長(zhǎng)為12cm,則這個(gè)圓的半經(jīng)是_cm18、 (2015廣安)如圖,ABC三點(diǎn)在O上,且AOB=70,則C= 度19、 24(2015巴中)圓心角為60,半徑為4cm的扇形的弧長(zhǎng)為 cm20、 (2015甘孜州)如圖,AB是O的直徑,弦CD垂直平分半徑OA,則ABC的大小為 度 二、 圓的基本性質(zhì)【例1】(2016資陽(yáng))如圖,在O中,點(diǎn)C是直徑AB延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)C作O的切線,切點(diǎn)為D,連結(jié)BD(1)求證:A=BDC;(2)若CM平分ACD,且分別交AD、BD于點(diǎn)M、N,當(dāng)DM=1時(shí),求MN的長(zhǎng)【解答】解:(1)如圖,連接OD,AB為O的直徑,A
9、DB=90,即A+ABD=90,又CD與O相切于點(diǎn)D,CDB+ODB=90,OD=OB,ABD=ODB,A=BDC;(2)CM平分ACD,DCM=ACM,又A=BDC,A+ACM=BDC+DCM,即DMN=DNM,ADB=90,DM=1,DN=DM=1,MN=【例2】(2015資陽(yáng))如圖11,在ABC中,BC是以AB為直徑的O的切線,且O與AC相交于點(diǎn)D,E為BC的中點(diǎn),連接DE.(1)求證:DE是O的切線;(2)連接AE,若C=45,求sinCAE的值.解答:解:(1)連接OD,BD,OD=OB ODB=OBDAB是直徑,ADB=90,CDB=90E為BC的中點(diǎn),DE=BE,EDB=EBD,
10、ODB+EDB=OBD+EBD,即EDO=EBOBC是以AB為直徑的O的切線,ABBC,EBO=90,ODE=90,DE是O的切線;(2) 作EFCD于F,設(shè)EF=xC=45,CEF、ABC都是等腰直角三角形,CF=EF=x,BE=CE=x,AB=BC=2x,在RTABE中,AE=x,sinCAE=【例3】(2014資陽(yáng))如圖,AB是O的直徑,過(guò)點(diǎn)A作O的切線并在其上取一點(diǎn)C,連接OC交O于點(diǎn)D,BD的延長(zhǎng)線交AC于E,連接AD(1)求證:CDECAD;(2)若AB=2,AC=2,求AE的長(zhǎng)解答:(1)證明:AB是O的直徑,ADB=90,B+BAD=90,AC為O的切線,BAAC,BAC=90
11、,即BAD+DAE=90,B=CAD,OB=OD,B=ODB,而ODB=CDE,B=CDE,CAD=CDE,而ECD=DCA,CDECAD;(2)解:AB=2,OA=1,在RtAOC中,AC=2,OC=3,CD=OCOD=31=2,CDECAD,=,即=,CE=【例4】(2013資陽(yáng))在O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD(1)如圖1,若點(diǎn)D與圓心O重合,AC=2,求O的半徑r;(2)如圖2,若點(diǎn)D與圓心O不重合,BAC=25,請(qǐng)直接寫(xiě)出DCA的度數(shù)解答:(1)如圖,過(guò)點(diǎn)O作OEAC于E,則AE=AC=2=1,翻折后點(diǎn)D與圓心O重合,OE=r,在RtAOE
12、中,AO2=AE2+OE2,即r2=12+(r)2,解得r=;(2)連接BC,AB是直徑,ACB=90,BAC=25,B=90BAC=9025=65,根據(jù)翻折的性質(zhì),所對(duì)的圓周角等于所對(duì)的圓周角,DCA=BA=6525=40【課后練習(xí)】1、 (2015達(dá)州)如圖,AB為半圓O的在直徑,AD、BC分別切O于A、B兩點(diǎn),CD切O于點(diǎn)E,連接OD、OC,下列結(jié)論:DOC=90,AD+BC=CD,OD:OC=DE:EC,正確的有()A2個(gè) B3個(gè) C4個(gè) D5個(gè)解析:如圖,連接OE,AD與圓O相切,DC與圓O相切,BC與圓O相切,DAO=DEO=OBC=90,DA=DE,CE=CB,ADBC。CD=D
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 完整版 中考 數(shù)學(xué) 復(fù)習(xí) 專(zhuān)題 教案
鏈接地址:http://zhizhaikeji.com/p-20567833.html