中考數(shù)學(xué)專題復(fù)習(xí)教案圓(共8頁(yè)).doc
《中考數(shù)學(xué)專題復(fù)習(xí)教案圓(共8頁(yè)).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)專題復(fù)習(xí)教案圓(共8頁(yè)).doc(8頁(yè)珍藏版)》請(qǐng)?jiān)趨R文網(wǎng)上搜索。
1、精選優(yōu)質(zhì)文檔-傾情為你奉上 圓綜合復(fù)習(xí)教學(xué)目標(biāo)】1、回顧、思考本章所學(xué)的知識(shí)及思想方法,并能用自己的方式進(jìn)行梳理,使所學(xué)知識(shí)系統(tǒng)化2、進(jìn)一步豐富對(duì)圓及相關(guān)結(jié)論的認(rèn)識(shí),并能有條理地、清晰地闡明自己的觀點(diǎn)3、通過(guò)復(fù)習(xí)課的教學(xué),感受歸納的思想方法,養(yǎng)成反思的習(xí)慣【重點(diǎn)難點(diǎn)】圓的有關(guān)概念和性質(zhì)的應(yīng)用【課堂活動(dòng)】一、圓的有關(guān)概念和性質(zhì)二知識(shí)點(diǎn)詳解(一)、圓的概念集合形式的概念: 1、 圓可以看作是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合; 2、圓的外部:可以看作是到定點(diǎn)的距離大于定長(zhǎng)的點(diǎn)的集合; 3、圓的內(nèi)部:可以看作是到定點(diǎn)的距離小于定長(zhǎng)的點(diǎn)的集合軌跡形式的概念:1、圓:到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡就是以定點(diǎn)
2、為圓心,定長(zhǎng)為半徑的圓;(補(bǔ)充)2、垂直平分線:到線段兩端距離相等的點(diǎn)的軌跡是這條線段的垂直平分線(也叫中垂線); 3、角的平分線:到角兩邊距離相等的點(diǎn)的軌跡是這個(gè)角的平分線; 4、到直線的距離相等的點(diǎn)的軌跡是:平行于這條直線且到這條直線的距離等于定長(zhǎng)的兩條直線; 5、到兩條平行線距離相等的點(diǎn)的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線。(二)、點(diǎn)與圓的位置關(guān)系1、點(diǎn)在圓內(nèi) 點(diǎn)在圓內(nèi);2、點(diǎn)在圓上 點(diǎn)在圓上;3、點(diǎn)在圓外 點(diǎn)在圓外;(三)、直線與圓的位置關(guān)系1、直線與圓相離 無(wú)交點(diǎn);2、直線與圓相切 有一個(gè)交點(diǎn);3、直線與圓相交 有兩個(gè)交點(diǎn);(四)、圓與圓的位置關(guān)系外離(圖1)
3、 無(wú)交點(diǎn) ;外切(圖2) 有一個(gè)交點(diǎn) ;相交(圖3) 有兩個(gè)交點(diǎn) ;內(nèi)切(圖4) 有一個(gè)交點(diǎn) ;內(nèi)含(圖5) 無(wú)交點(diǎn) ; (五)、垂徑定理垂徑定理:垂直于弦的直徑平分弦且平分弦所對(duì)的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條??; (2)弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧; (3)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 以上共4個(gè)定理,簡(jiǎn)稱2推3定理:此定理中共5個(gè)結(jié)論中,只要知道其中2個(gè)即可推出其它3個(gè)結(jié)論,即: 是直徑 弧弧 弧弧中任意2個(gè)條件推出其他3個(gè)結(jié)論。推論2:圓的兩條平行弦所夾的弧相等。 即:在中, 弧?。?、圓心
4、角定理圓心角定理:同圓或等圓中,相等的圓心角所對(duì)的弦相等,所對(duì)的弧相等,弦心距相等。 此定理也稱1推3定理,即上述四個(gè)結(jié)論中,只要知道其中的1個(gè)相等,則可以推出其它的3個(gè)結(jié)論,即:; 弧?。ㄆ撸A周角定理1、圓周角定理:同弧所對(duì)的圓周角等于它所對(duì)的圓心的角的一半。即:和是弧所對(duì)的圓心角和圓周角 2、圓周角定理的推論:推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧是等?。患矗涸谥?,、都是所對(duì)的圓周角 推論2:半圓或直徑所對(duì)的圓周角是直角;圓周角是直角所對(duì)的弧是半圓,所對(duì)的弦是直徑。即:在中,是直徑 或 是直徑推論3:若三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直
5、角三角形。即:在中, 是直角三角形或注:此推論實(shí)是初二年級(jí)幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。(八)、圓內(nèi)接四邊形圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角。 即:在中, 四邊形是內(nèi)接四邊形 (九)、切線的性質(zhì)與判定定理(1)切線的判定定理:過(guò)半徑外端且垂直于半徑的直線是切線; 兩個(gè)條件:過(guò)半徑外端且垂直半徑,二者缺一不可 即:且過(guò)半徑外端 是的切線(2)性質(zhì)定理:切線垂直于過(guò)切點(diǎn)的半徑(如上圖) 推論1:過(guò)圓心垂直于切線的直線必過(guò)切點(diǎn)。 推論2:過(guò)切點(diǎn)垂直于切線的直線必過(guò)圓心。以上三個(gè)定理及推論也稱二推一定理:即:過(guò)圓心;過(guò)切點(diǎn);垂直切線
6、,三個(gè)條件中知道其中兩個(gè)條件就能推出最后一個(gè)。三例題講析例1 如圖,在半徑為5cm的O中,圓心O到弦AB的距離為3cm,則弦AB的長(zhǎng)是( )A4cm B6cm C8cm D10cm解題思路:在一個(gè)圓中,若知圓的半徑為R,弦長(zhǎng)為a,圓心到此弦的距離為d,根據(jù)垂徑定理,有R2=d2+()2,所以三個(gè)量知道兩個(gè),就可求出第三個(gè)答案C例2、如圖,A、B、C、D是O上的三點(diǎn),BAC=30°,則BOC的大小是( )A、60° B、45° C、30° D、15°解題思路:運(yùn)用圓周角與圓心角的關(guān)系定理,答案:A例3 如圖,點(diǎn)O是ABC的內(nèi)切圓的圓心,若BAC=
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
20 積分
下載 | 加入VIP,下載共享資源 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中考 數(shù)學(xué) 專題 復(fù)習(xí) 教案