高中數(shù)學 第二章 平面向量 2.1 平面向量的實際背景及基本概念課件2 新人教A版必修4.ppt
《高中數(shù)學 第二章 平面向量 2.1 平面向量的實際背景及基本概念課件2 新人教A版必修4.ppt》由會員分享,可在線閱讀,更多相關《高中數(shù)學 第二章 平面向量 2.1 平面向量的實際背景及基本概念課件2 新人教A版必修4.ppt(50頁珍藏版)》請在匯文網(wǎng)上搜索。
1、第二章平面向量 2.1平面向量的實際背景及基本概念,【知識提煉】 1.向量 既有_,又有_的量. 2.有向線段 帶有_的線段,它包含三個要素:_、方向、長度.,大小,方向,方向,起點,3.向量的表示法 (1)幾何表示:用_表示,此時有向線段的方向就是向量的方向.向量的大小就是向量的_(或稱模),記作_. (2)字母表示:通常在印刷時,用黑體小寫字母a,b,c,表示向量,書寫時,可寫成帶箭頭的小寫字母 ,.還可以用表示向量的有向線段的起點和終點字母表示,如以A為起點,以B為終點的向量記為 .,有向線段,長度,4.幾種特殊的向量 (1)零向量:長度為_的向量,記作_. (2)單位向量:長度等于_的
2、向量叫做單位向量. (3)相等向量:長度_且方向_的向量. (4)平行向量:方向_的非零向量,如果向量a和b平行,記 作_;規(guī)定零向量與任意向量_.,0,0,1,相等,相同,相同或相反,ab,平行,【即時小測】 1.思考下列問題. (1)向量 與向量 是相等向量嗎? 提示:不是.向量 與向量 的方向相反不是相等向量. (2)兩個向量平行時,表示向量的有向線段所在的直線一定平行嗎? 提示:不一定.兩個向量平行時,表示向量的有向線段所在的直線平行 或重合.,2.有下列物理量:質量;溫度;角度;彈力;風速. 其中可以看成是向量的個數(shù)() A.1B.2C.3D.4 【解析】選B.因為質量、溫度、角度只
3、有大小,沒有方向,所以他們不是向量,而彈力、風速既有大小,又有方向,所以它們可以看成向量.,3.已知向量a如圖所示,下列說法不正確的是() A.也可以用 表示 B.方向是由M指向N C.始點是M D.終點是M 【解析】選D.終點是N而不是M.,4.如圖,以1cm3 cm方格紙中的格點為始點和終點的所有向量中,則以A為始點,可以寫出_個不同的向量.,【解析】由圖可知,以A為始點的向量有 共有7個. 答案:7,【知識探究】 知識點1 向量的物理背景及概念 觀察圖形,回答下列問題: 問題1:上面圖中的兩種力有何特點?你還能舉出物理學中力的一些實例嗎? 問題2:這樣的量與數(shù)量有怎樣的區(qū)別,與有向線段有
4、何區(qū)別?,【總結提升】 1.理解向量概念應關注的三點 (1)本書所學向量是自由向量,即只有大小和方向,而無特定的位置,這樣的向量可以作任意平移. (2)判斷一個向量是否為向量,就要看它是否具備了大小和方向兩個因素. (3)向量與向量之間不能比較大小.,2.向量與有向線段的區(qū)別 (1)向量只有大小和方向兩個要素,與起點無關.只要大小和方向相同,這兩個向量就是相等的向量. (2)有向線段是表示向量的工具,它有起點、大小和方向三個要素,起點不同,盡管大小和方向相同,也是不同的有向線段.,【拓展延伸】向量與數(shù)量的區(qū)別和聯(lián)系,知識點2 向量與向量的關系 觀察如圖所示內容,回答下列問題: 問題1:兩個向量
5、的長度相等,這兩個向量就是相等向量嗎?與已知向量相等的向量是唯一的嗎? 問題2:平行向量與共線向量的含義一樣嗎?,【總結提升】 1.對平行向量、相等向量概念的理解 (1)平行向量是指方向相同或相反的非零向量,規(guī)定零向量與任意向量平行,即對任意的向量a,都有0a,這里注意概念中提到的“非零向量”. (2)對于任意兩個相等的非零向量,都可以用同一條有向線段來表示,并且與有向線段的起點無關.在平面上,兩個長度相等且指向一致的有向線段表示同一個向量,因為向量完全由它的方向和模確定的. (3)相等向量是平行(共線)向量,但平行(共線)向量不一定是相等向量.,2.平行向量與共線向量的含義 (1)平行向量與
6、共線向量是同一概念的不同名稱,根據(jù)定義可知,平行(共線)所在的直線可以平行,也可以重合. (2)共線向量所在的直線可以平行,與平面幾何中的“共線”含義不同. (3)平行向量可以在同一條直線上,與平面幾何中“直線平行”不同,平面中兩直線平行是指兩直線沒有公共點.,【題型探究】 類型一 向量的概念、零向量、單位向量 【典例】1.下列各量中是向量的是() A.時間B.加速度C.面積D.長度,2.給出下列說法 零向量是沒有方向的; 零向量的長度為0; 零向量的方向是任意的; 單位向量的模都相等; 由于0方向不確定,故0不能與任一向量平行; 其中正確的是_(填上序號).,【解題探究】1.向量的特征是什么
7、? 提示:既有大小又有方向. 2.零向量和單位向量的特征是什么?零向量的方向是怎么規(guī)定的? 提示:零向量的長度為0.單位向量的長度為1.零向量的方向是任意的.,【解析】1.選B.加速度是既有大小又有方向的量,是向量.而時間,面積,長度是只有大小的量,是數(shù)量. 2.由零向量的方向是任意的,知錯誤,正確;由零向量的定義知正確;由單位向量的模1,知正確.依據(jù)規(guī)定:0與任一向量平行,錯誤. 答案:,【方法技巧】 1.判斷一個量是否為向量的兩個關鍵條件 關鍵看它是否具備向量的兩要素:(1)有大小.(2)有方向.兩個條件缺一不可. 2.理解零向量和單位向量應注意的問題 (1)零向量的方向是任意的,所有的零
8、向量都相等. (2)單位向量不一定相等,易忽略向量的方向.,【變式訓練】(2015邢臺高一模擬)汽車以100km/h的速度向東行駛 2 h,而摩托車以50 km/h的速度向南行駛2 h.則關于下列說法:汽車的速度大于摩托車的速度,汽車的位移大于摩托車的位移,汽車行駛的路程大于摩托車行駛的路程.其中正確的個數(shù)是() A.0個 B.1個 C.2個 D.3個 【解析】選B.向量不能比較大小,速度、位移是向量.數(shù)量可以比較大小,所以只有正確.,類型二 相等向量與共線向量 【典例】1.給出下列說法 若向量a與b同向,且|a|b|,則ab; 若|a|=|b|,則a與b的長度相等且方向相同或相反; 若ab,
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高中數(shù)學 第二章 平面向量 2.1 平面向量的實際背景及基本概念課件2 新人教A版必修4 第二 平面 向量 實際 背景 基本概念 課件 新人 必修
鏈接地址:http://zhizhaikeji.com/p-666698.html